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We identify 10 generic pitfalls that can affect the experimental outcome of AI driven solutions  
in computer security. We find that they are prevalent in the literature and provide recommendations 
for overcoming them in the future.

A rtificial intelligence (AI) 
and machine learning have 

enabled remarkable progress in 
science and industry. This advance-
ment has naturally also impacted 
computer security, with nearly 
every major vendor now marketing 
AI-driven solutions for threat anal-
ysis and detection. Similarly, the 

number of research papers applying 
machine learning to solve security 
tasks has literally exploded.

These works come with the 
implicit promise that learning algo-
rithms provide significant benefits 
compared with traditional solu-
tions. In recent years, however, 
different studies have shown that 
learning-based approaches often 
fail to provide the promised per-
formance in practice due to various 

restrictions ignored in the original 
publications.1,2,3,4 In this article, 
we want to ask, Are there generic 
pitfalls that can affect the experi-
mental outcome when applying 
machine learning in security? If 
so, how can researchers avoid step-
ping into them?

Why Should I Care?
As a thorough researcher, one 
might tend to think, “This can 
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never happen to me.” However, as 
we will discuss in this article, pitfalls 
come in various forms and flavors, 
some obvious but others notice-
able only with a very cautious eye. 
Hence, even experienced research-
ers might step into them from time 
to time without noticing. With this 
work, we want to raise awareness of 
these issues in the research com-
munity to reduce their prevalence 
in security research. Detailed rec-
ommendations and guidelines for 
each of the pitfalls can be found in 
the original paper.5

A Motivating Example
To illustrate the problem, let us 
consider a learning-based method 
for the discovery of security vulner-
abilities in source code as a moti-
vating example.6 As the manual 
auditing of source code is generally 
a time-consuming and tedious task, 
researchers have started to outsource 
it to machine learning algorithms. 
Here especially deep learning-based 
techniques have recently attained 
promising results in discovering 
vulnerabilities.6,7,8

Unfortunately, it has been shown 
that the performance of these mod-
els can often not keep up with the 
promises made.8 Naturally, the 
question arises of what causes these 
huge discrepancies. In the follow-
ing, we discuss some pitfalls that 
might have led to an overestimation 
of those methods’ capabilities.

Spurious Correlations
Even though deep neural networks 
have led to major breakthroughs in 
various areas, it is often unclear why 
they achieve this impressive perfor-
mance. Fortunately, in recent years, 
several methods have been devel-
oped that enable the interpretation 
of these models, shedding some 
light on the decision-making pro-
cess of neural networks.9

As an example, when analyzing a 
state-of-the-art method using these 
explanation techniques, we find that 

the highlighted features are barely 
connected to security vulnerabili-
ties.5,6 Instead, the most relevant 
features are meaningless tokens like 
brackets or commas in the source 
code, which have no semantic rel-
evance to vulnerable code and thus 
represent noncausal spurious cor-
relations. It seems as if these arti-
facts serve as shortcuts that allow 
the learning model to distinguish 
between vulnerable and nonvul-
nerable code. However, what could 
have caused this issue?

Sampling Bias
A possible and common reason 
for the presence of spurious cor-
relations is sampling bias. In this 
case, the distribution of the train-
ing data does not sufficiently rep-
resent the distribution at test time. 
Consequently, the model is not able 
to learn the underlying concept of 
the given task but rather relies on 
artifacts introduced in the train-
ing distribution. When composing 
a dataset for training the model, 
researchers need to be aware that 
there exist a variety of sources for 
sampling bias, some of which are 
very subtle. The strategy for col-
lecting the data might thus bias the 
resulting dataset toward certain 
software versions, code authors, or 
programming languages.

Data Snooping
Let us assume that the collected 
dataset does not suffer from sampling 
bias. Are there any other, less known, 
issues that might result in huge dif-
ferences in the performance at train-
ing and test time? Indeed, another 
common pitfall that can lead to 
overoptimistic results is commonly 

referred to as data snooping. Here a 
learning model is trained with infor-
mation that would not be available in 
practice. While this appears to be a 
pitfall that can be avoided very easily 
at the first glance, it turns out to be 
much harder to avoid than expected 
in many cases.

The reason is that data snoop-
ing exists in many different forms, 
some of which can be easily over-
looked. For example, using incor-
rect time splits that ignore time 
dependencies within the data can 

inflate the actual performance.1 Simi-
larly, this pitfall applies if noisy data 
are removed from the test set based 
on knowledge that would normally 
not be available at training time. 
Even more subtle, solely evaluating 
well-known benchmark data might 
also overestimate the performance. 
Established benchmarks come with 
a history, so that researchers may 
unnoticeably use knowledge from 
prior work, including insights from 
the test distribution.

The Greater Picture
The previous examples illustrate 
that there obviously exist a number 
of pitfalls that can harm the experi-
mental outcome. However, the pre-
viously discussed issues are just the 
tip of the iceberg.

In this section, we provide a 
systematic overview of common 
pitfalls and explore their preva-
lence later in this article. To this 
end, we follow the individual stages 
of a typical machine learning pipe-
line. Figure 1 depicts the pipe-
line together with all pitfalls, and 
Table 1 provides a short description 
of each issue.

However, as we will discuss in this 
article, pitfalls come in various forms 
and flavors, some obvious but others 

noticeable only with a very cautious eye.
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Data Collection and  
Labeling Phase
Before we can start with develop-
ing a new learning-based method, 
we first have to collect an expres-
sive dataset that resembles the data 
distribution we assume to see in 
practice. Moreover, we also often 
require meaningful label informa-
tion if we want to apply supervised 
learning. Unfortunately, the com-
position of a realistic dataset with 
labels is often challenging, leading 
to the first two pitfalls: P1, sampling 
bias, and P2, label inaccuracy.

We have already discussed how 
sampling bias can affect the experi-
mental outcome. Similarly, in the 
case of P2, the labels are erroneous 
or unstable, which, in turn, can also 
impact the performance of a learning 
model if we do not correct this noise.

System Design and  
Learning Phase
Once we have composed a dataset, 
we can design and train our machine 
learning model. This stage includes 
the preprocessing of the data and 
the extraction of suitable features, as 
well as learning the actual model. In 
this stage, we can step in three dif-
ferent pitfalls when not being care-
ful: P3, data snooping; P4, spurious 
correlations; and P5, biased param-
eter selection.

In the case of P3 and P5, the sep-
aration of training and test partition 
is flawed, so that the model uses 
information that is unavailable at 
test time, biasing the outcome of the 
experimental setup. For instance, 
the developers might ignore time 
dependencies within the  collected 
data, such that the machine learn-
ing model is trained on data com-
prising future knowledge (which is 
not available outside the matrix). 
Another issue arises from P4. Here 
the feature design allows the model 
to pick up on artifacts unrelated to 
the security pattern, thus creating a 
shortcut for solving the actual tasks. 
While this can be unproblematic in 
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some cases, it can also lead to seri-
ous problems and let the model fail 
completely during its deployment.

Evaluation Phase
In the next stage, we evaluate the 
previously trained model and exam-
ine its performance on test data. 
Here we have to pay attention to 
not step into one of the following 
three pitfalls: P6, inappropriate 
baseline; P7, inappropriate perfor-
mance measures; or P8, the base 
rate fallacy.10

In the case of P6, the learning 
model is not compared against suit-
able baseline approaches. For instance, 
a simple, nonlearning-based method 
can sometimes achieve a similar or 
even better performance than a com-
plex deep neural network. However, 
due to the lack of comparison, this 
fact remains hidden.

A similar problem arises if the 
chosen performance measures are 
not appropriate for the application 
scenario (P7). As an example, we 
often have to deal with highly imbal-
anced datasets in security, like in mal-
ware detection. In these cases, we 

have to identify malicious objects 
that represent only a small propor-
tion of the entire data distribution. 
When using the wrong performance 
metrics in these settings, like the 
accuracy, one gets an entirely false 
estimate of the true performance of a 
learning-based system.

Moreover, even if proper met-
rics are used, the performance of a 
system might still be overestimated 
by ignoring the base rate of the 
negative class in reality (P8). Let us 
assume, for example, a seemingly 
efficient classifier with 99% true 
positives at 1% false positives. Yet, 
if we have a class ratio of 1:100, so 
that the negative class is predomi-
nant, even 1% false positives still 
cause 100 false positives for every 
99 true positives.

Deployment and  
Operation Phase
Finally, we obtain a learning model 
whose detection performance meets 
our requirements. We can now 
deploy and operate it in the wild. We 
might already assume that we have 
successfully avoided all possible 

pitfalls. Unfortunately, there are still 
two additional issues that can have 
a severe impact on the performance 
in practice.

First, we should account for any 
practical limitations that we did not 
consider throughout the evaluation. 
Oftentimes, new learning meth-
ods are solely evaluated in lab-only 
environments (P9), where crucial 
constraints of realistic settings are 
ignored, such as run-time or stor-
age restrictions. As a result, a prom-
ising method might turn out to be 
unsuitable in a production setting. 
Furthermore, we need to consider 
the security of our learning-based 
system, as adversaries might run tar-
geted attacks against it (P10). For 
instance, malicious actors could try to 
circumvent detection or derive infor-
mation about the learning model. To 
fend off these attacks successfully, it is 
necessary to strengthen the learning 
model before its deployment.

Are the Pitfalls Prevalent?
Naturally, the question arises of 
how likely each of the previously 
discussed pitfalls is to occur. To get 

Table 1. An overview of common pitfalls of machine learning in computer security.

Pitfall Description

P1 Sampling bias The composed dataset does not sufficiently represent the actual distribution.

P2 Label inaccuracy The ground-truth labels are inaccurate, unstable, or erroneous.

P3 Data snooping Information is used at training time that is usually not available in practice.

P4 Spurious correlations A learning model relies on false associations caused by artifacts unrelated to 
the task.

P5 Biased parameter selection Final parameters of a learning method are indirectly determined on the test set.

P6 Inappropriate baseline No adequate baseline methods are used in the evaluation for comparison.

P7 Inappropriate performance 
measures

Used performance measures are not suitable for the application scenario.

P8 Base rate fallacy Large class imbalance is ignored when interpreting the performance.

P9 Lab-only evaluation The developed system is only tested in a laboratory setting.

P10 Inappropriate threat model Attacks against the machine learning component itself are not considered.
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an intuition, we review 30 academic 
papers published at top confer-
ences for security between 2011 and 
2020. When selecting the papers, we 
ensure that they cover a wide range of 
security-related topics, ranging from 
learning-based malware detection to 
intelligent vulnerability discovery. 
If a pitfall’s presence is unclear, the 
reviewers decide conservatively and 
always give the authors of a paper 
the benefit of the doubt.

Figure 1 highlights the outcome 
of the study. The colored bar shows 
their prevalence in our study, with 
warmer colors depicting the pres-
ence of a pitfall. We find that the 
pitfalls are widespread even in top 
research. Each paper is affected by 
at least three of the discussed issues. 
The most prevalent pitfall is sampling 
bias (P1), followed by data snooping 
(P3), which are at least partly present 
in 90% and 73% of the considered 
publications, respectively. Similarly, 
other pitfalls occur frequently, such 
as the use of inappropriate perfor-
mance measures (P7) or the evalua-
tion in a lab-only setting (P9), both 
of which appear in at least 50% of all 
the papers. Interestingly, we find that 
that the presence of a pitfall is only 
accompanied by a discussion in 22% 
of the cases, indicating that there is 
a lack of awareness regarding these 
common issues.

To get a full picture of the situa-
tion, we have also collected feedback 
from the authors of the reviewed 
papers. The vast majority of the 
authors from which we received a 
response agreed that there is a lack 
of awareness for the identified pit-
falls and confirm that these are wide-
spread in security research.

We Can Do Better
The discussed pitfalls are more than 
just an academic problem. In fact, 
they introduce severe biases and 
hinder actual progress in research. 
As a result, we need to discuss 
within the community how to over-
come these problems in the future.

First and foremost, it is pos-
sible to avoid the identified pit-
falls in many cases. Therefore, 
we recommend double-checking 
each stage of the machine learn-
ing pipeline and looking out for 
potential issues when develop-
ing a new approach. For instance, 
methods to fix inaccurate labels 
or methods of explainable AI to 
check for spurious correlations 
are applicable.

Unfortunately, there exist cases 
in which it can be challenging to 
avoid a pitfall entirely. As an exam-
ple, it might be hard to compen-
sate for sampling bias due to a lack 
of data. In these cases, it is crucial 
to openly discuss the problem so 
that other researchers can solve it 
in the future. In general, we thus 
recommend to “do your best” by 
mitigating pitfalls where possible 
and acknowledging remaining 
problems openly.

Overall, we hope that our work 
can help to promote sound research 
and bring the enormous potential 
of AI techniques into the reality of 
security. 
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