
Detecting Weak Keys in Manufacturing Certificates: A Case Study
Andrew Chi

andrchi@cisco.com
Cisco Systems

San Jose, CA, USA

Brandon Enright
brenrigh@cisco.com

Cisco Systems
San Jose, CA, USA

David McGrew
mcgrew@cisco.com

Cisco Systems
San Jose, CA, USA

ABSTRACT
Weak entropy is an industry-wide challenge for network device
vendors. We conducted a large scale analysis of RSA keys in about
226 million device certificates from one vendor, covering products
that were manufactured over a 12-year time period. By focusing on
specific data features of the manufacturing certificates, we tested
for common keys and common factors across distinct devices. The
scale of our analysis enabled the detection of entropy failures that
manifested in the RSA keys of millions of devices. The affected de-
vices included several products not implicated in any prior studies,
resulting in the discovery of three new vulnerabilities in actively
supported products. The entropy failures were complex, resulting
from both low initial entropy and the faulty composition of man-
ufacturing processes. Most affected product families were lower-
margin devices past their end-of-support date; higher-end products
that used a vendor-sanctioned hardware entropy source did not
exhibit these weaknesses. However, our findings warrant more
proactive and systematic entropy testing by device vendors.

CCS CONCEPTS
• Security and privacy → Key management; Cryptanalysis and
other attacks; Public key (asymmetric) techniques.

KEYWORDS
device certificates, entropy, RSA, key generation
ACM Reference Format:
Andrew Chi, Brandon Enright, and David McGrew. 2023. Detecting Weak
Keys in Manufacturing Certificates: A Case Study. In Annual Computer Secu-
rity Applications Conference (ACSAC ’23), December 04–08, 2023, Austin, TX,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3627106.
3627120

1 INTRODUCTION
Cryptography relies on the unpredictability of keys, and secure key
generation requires a good entropy source. Despite this widespread
need, the implementation and testing of entropy sources remains
a challenge for the industry. The widespread prevalence of weak
public keys on Internet devices was demonstrated twice over the
last decade [10, 11], and persists today, as we show in Section 4.1.2.
Software entropy sources are especially challenged when tapped

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’23, December 04–08, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0886-2/23/12. . . $15.00
https://doi.org/10.1145/3627106.3627120

Figure 1: Entropy can be gathered from specialized hardware,
or through operating system software. Some devices store
entropy across reboots.

Figure 2: Software entropy sources accumulate unpredictabil-
ity over time, and its outputs may be weak for some period
after startup.

immediately after bootup, when their entropy pool is effectively
empty. This Low Initial Entropy (LIE) problem has plagued network
devices, many of which generate a public-private keypair during
their first run, either during the manufacturing process, or on the
customer’s network.

Many operating systems harvest entropy from their environ-
ment by gathering together many slightly unpredictable values
and accumulating entropy over time (Figure 2). However, it is dif-
ficult to verify the soundness of such designs, and the amount of
entropy they produce can depend on factors like their operating
environment and hardware and software configuration. Some de-
vices store entropy across reboots in a ‘seed’ file, so that the pool
is not empty after a restart (Figure 1). However, these devices still
have low entropy after their first bootup.

Determining whether an entropy source is susceptible to low
initial entropy (LIE) can be challenging. Fundamentally, it is im-
possible to make a statistical assessment based on a single output.
Restated intuitively, there is no such thing as a random number—
there are only methods to randomly produce numbers. Therefore,

1

759

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3627106.3627120
https://doi.org/10.1145/3627106.3627120
https://doi.org/10.1145/3627106.3627120
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627106.3627120&domain=pdf&date_stamp=2023-12-04

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

multiple samples are always necessary for entropy testing. Unfor-
tunately, obtaining multiple samples is necessary but not sufficient.
Repeatedly sampling a single device a large number of times will
not detect LIE, as a typical pseudorandom generator (PRG) will
take an initial seed value and create a sequence of numbers that
do not collide,1 even if no new entropy is ever mixed into the PRG
state. Sampling many devices at boot time will detect LIE: devices
with the same initial state and the same nondeterministic inputs
will generate the same sequence of random numbers. This is de-
tectable by generating a small sample of numbers from each of a
large collection of devices, i.e., population testing.

Given a population of devices, what test should be applied? Test-
ing devices for low initial entropy could conceivably be performed
at many different system layers: hardware or software component
unit tests, operating system regression tests, or run time checks.
This work focuses on an output that represents an end-to-end test:
device X.509 certificates for use with TLS. This choice is impor-
tant. While unit tests can check for good entropy at a component
level, good components can still be composed into a faulty system.
Device certificates—specifically the public keys—therefore repre-
sent an end-to-end test that samples entropy in the form of key
generation output.

How does weak entropy appear in device certificates? We exam-
ined two catastrophic failure modes: (1) common factors, where two
or more RSA keys, generated by distinct devices, share a common
factor, and (2) common keys, where two or more keys, generated
by distinct devices, are identical. To test for common factors in a
large population of devices, we used the batch greatest common di-
visor (BGCD) method developed by Bernstein [3] and implemented
by Heninger et al. [11]. In order to accommodate the scale of our
dataset, we reimplemented the GCDmethod to scale beyond the lim-
itations of the GNU Multiple Precision Arithmetic Library (GMP).
We also adapted the GCD method to optimize for cloud computing
cost. To test for common keys, we grouped certificates with the
same public key. We then developed vendor-specific code that used
other certificate fields to determine whether two certificates with
the same public key came from the same device (permissible) or
from two distinct devices (entropy failure). In addition, for products
with common factors or common keys, we estimated the number
of bits of entropy actually exhibited in the typical key space. This
estimate could be useful both for debugging (identifying the faulty
component), as well as estimating the cost to an attacker whose
goal is to purchase enough devices to observe collisions.

We applied the common-factor and common-key tests to two
large datasets. The first dataset consisted of manufacturing cer-
tificates. Manufacturing certificates are installed after a device is
assembled but before it is shipped to a customer. These certificates
can be readily obtained from a centralized point, as it is standard
practice for a device vendor’s Certification Authority (CA) to keep
records of all certificates that it has ever issued. In the case studied,
the dataset consisted of about 226 million manufacturing certifi-
cates issued from 2008-2020 by a vendor certification authority (CA),
namely Cisco Cryptographic Services . The second dataset consisted

1More precisely, given a family of statistical tests, a PRG maps a random seed to a
longer string of bits that no statistical test in the family can distinguish from the
uniform distribution. Most random number generators are built from a PRG.

of 37.7 million TLS certificates obtained from internet scans dur-
ing Spring 2021, performed by Rapid7’s Project Sonar. Within this
dataset, we especially focused on device-issued certificates, e.g.,
the certificate generated when a user enables an administrative
interface on the device and chooses to protect that interface using
TLS.

The majority of manufacturing certificates were not affected,
including all devices that used a hardware entropy source that was
vendor-designated for its higher end products. However, we did
discover previously unknown weak keys in over 4 million device
certificates issued over the span of 2008 - 2020. These weak keys
affected several product families, including Aironet-based WLAN,
IP telephony, and Linksys. Weak keys started appearing in 2008, hit
a peak of 250,000 per month in 2012, and have tapered off, with few
appearing in 2020. Most affected products were past End-of-Life
(EOL), but the CP-6901 had this problem, and was not yet EOL, as
did the Cisco 2504 Wireless Controller, which was not yet End-of-
Support (EOS). We also found weak keys in self-signed certificates
of Cisco Small Business Routers (RV220W, RV130W) obtained from
internet scans. For the devices that were not End-of-Life, we worked
closely with the vendor’s Product Security Incident Response Team
(PSIRT) to publish one new CVE (CVE-2022-20817) and two new
release note enclosures advising of product vulnerabilities.

This case study shows that the low initial entropy problem still
affects devices currently being manufactured, and can result in
catastrophic entropy failure in RSA public keys. Fortunately, in the
vendor studied, the prevalence of the problem has decreased over
the years, and is restricted to a small subset of the vendor’s products.
Nevertheless, based on the results in this study, we recommend
population-wide testing of entropy in manufactured devices, after
the device has been assembled, but before it is shipped to the cus-
tomer. Such testing can potentially detect entropy failures before
products are shipped to a large number of users.

2 CONTRIBUTIONS
This study is the largest-scale analysis to date of both manufactur-
ing X.509 certificates, as well as common (duplicate) keys in those
X.509 certificates. Investigating common keys has been challenging
to do in previous studies due to the difficulty of distinguishing
whether two certificates with the same key were issued to the same
device (legitimate) or different devices (entropy failure). By work-
ing closely with one vendor’s certification authority, PSIRT, and
product teams, we were able to differentiate between devices and
investigate entropy failures. Detection of common keys is applica-
ble to ECC and atomic RSA key generation, not just non-atomic
RSA key generation, and therefore enables our system to detect
flaws in a larger class of implementations. In addition, we apply
a mathematical analysis to calculate the poorness of the entropy
source that fed key generation. This enables us to estimate how
many keys are needed to test the devices, and in the case of low
entropy, gives debugging clues as to which entropy sources may
have failed. Finally, we apply batch GCD to a substantially larger set
of RSA keys than previous works, by parallelizing the computation
in a way that scales well to cloud computation and does not require
modification of the GMP library.

2

760

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

3 RELATEDWORK
We build on a line of prior works. Bernstein [3] developed a batch
factorization algorithm that quickly computes all-pairs GCD among
n integers by using a product tree, remainder tree, n division oper-
ations, and n GCD operations. In 2012, Heninger et al. [11] applied
Bernstein’s algorithm to 11.2 million RSA keys obtained through
internet scans for TLS certificates, discovering a surprisingly large
number of both repeated keys and factorable keys. (Due to the
nature of the dataset, repeated keys could not always be clearly
mapped to distinct devices.) In 2016, Hastings et al. [10] repeated the
study on 81 million RSA keys found through subsequent scans, and
found that weaknesses remained. They were the first to parallelize
the batch GCD computation into subsets, and made modifications
to GMP to accommodate the large integer products (the authors
generously shared their GMP patch code). In 2019, Kilgallin and
Vasko [12] analyzed 159 million RSA keys from internet scans and
Certificate Transparency (CT) logs for common factors but not com-
mon keys. They found that broken moduli almost entirely came
from the internet scans, and they attributed over half of broken
moduli to Internet of Things (IoT) devices. Our work builds on this
line of research, but focuses on manufacturing certificates that are
not usually accessible via direct internet scans; we worked closely
with the vendor to identify distinct devices and to investigate the
root cause of entropy failures. We also wrote and open-sourced
a batch GCD implementation that can be parallelized to handle
over 226 million certificates (using cloud compute resources). Our
implementation differs from Hastings et al. in that it further de-
couples the subset computations, and does not require patching
GMP, making it more easily reusable and maintainable in the future.
Moreover, our work not only detects factorable RSA keys, but also
common keys; to our knowledge, no recent work has performed a
thorough investigation of common keys.

An attacker wishing to exploit weak RSA keys may need to
determine the library that generated those RSA keys. Svenda et
al. [20] developed methods for origin attribution of a large sample
of RSA keys. Branca et al. [6] were able to achieve high attribution
accuracy in some cases even with a single RSA key. In cases where
the private key is known or recoverable (e.g., via batch GCD), there
can be further attacks that model the prime-generation procedure.
Bernstein et al. [4] factored RSA keys in smart cards initially using
batch GCD, and after noticing visible patterns of non-randomness
in the recovered primes, applied a Coppersmith-type partial-key-
recovery attack to recover additional private keys.

Our work in estimating the size of the typical set of keys (and
thus the effort required of an attacker) has parallels to estimating
animal populations using a mark-recapture methodology [15]. The
problem statement that we chose is known as the Inverse Coupon
Collector’s Problem, and has been studied by Dawkins [9] as well
as Langford [13]. Our formulation is of course equivalent, but can
be implemented cleanly in a few lines of Python (using SciPy [22])
without requiring optimization of an objective function that is
a summation where the number of terms depends on the input
variable over which we are optimizing.

While our batch GCD work targets RSA keys, elliptic curve cryp-
tography (ECC) is also widely deployed and can also be vulnerable
to both accidental and intentional weaknesses in random number

generation. Bos et al. [5] studied several practical deployments of
ECC and noted weaknesses due to apparent entropy failures; for
example, poor randomness used in ECDSA signature generation
could compromise the long-term signing key. Checkoway et al. [7]
analyzed the Juniper Dual EC incident, which involved a pseudoran-
dom number generator whose outputs could be readily predicted
by an adversary capable of choosing the elliptic curve parameters.

3.1 FIPS-140
Historically, the entropy tests in the U.S. Government’s FIPS-140
certification testing program [16] would not detect Low Initial En-
tropy, but recent changes to that program add a “restart” test that
aims to close that gap [18]. See Section 7.18 of the NIST CMVP
Implementation Guidance [17], and Section 3.14 of NIST Special
Publication (SP) 800-90B [21]. At least some affected products have
been through FIPS-140 evaluations (Such as the CT2504, for in-
stance), which underscores the incompleteness of those historical
evaluations.

3.2 Pseudorandom Generator Cloning
Weak entropy has an an important parallel in the issue of pseudo-
random generator cloning, which can undermine cryptographic
security in virtualized environments in ways that escape most secu-
rity controls. A cloned snapshot of a running VM, or an application
fork(), causes misuse of pseudorandom generator state that can
render TLS and other cryptographic sessions insecure (Fig. 3). These
problems can be detected using a batch methodology similar to
the common key test. Preliminary work in this area found several
issues on a corporate network [14]. It should be possible to extend
the network metadata capture tool to report TLS random nonces,
to enable collection from operational sessions at scale. It may also
be worth investigating signatures and public keys.

Figure 3: A running VM snapshot, or application fork(), in-
advertently duplicates pseudorandom generator state, which
can lead to duplicate keys and nonces that undermine secu-
rity.

4 METHODS
To test for LIE, it is not sufficient to test many keys that are gen-
erated successively during a single run of a single device, which
has been the dominant methodology for entropy testing2. However,
2FIPS-140 accepted the single-run methodology up until 2021; see Section 3.1.

3

761

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/government/security_certification/pdfs/wlc-5520-8540-8510-2504.pdf
https://github.com/cisco/mercury

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

testing many keys generated right after bootup can detect LIE. To
check for this problem in Cisco products, we tested the subject
keys in manufacturing certificates (Section 4.1.1) obtained from the
Cryptographic Services team, and a set of device-issued certificates
obtained from internet scans (Section 4.1.2). Manufacturing certifi-
cates are issued by the Cisco Certificate Authority (CA), whereas
device-issued certificates are self-signed, but in both cases, the de-
vice may generate its own key, and may do so soon after booting
up, possibly for the first time.

We used two tests that processed all of the certificates in bulk:
• the batch greatest common divisor test (BGCD) identifies
RSA public keys that share a common factor, and

• the common key test identifies devices that share a com-
mon key.

A common factor or a common key, in certificates issued to different
devices, indicates a significant entropy failure3. When applying
these tests to certificates, without any other ground truth data about
which device generated which key, the BGCD test is important
because a common factor is unambiguous evidence of weak entropy
that needs no further analysis.

The tremendous size of certificate data set posed a challenge: it
was several times larger than the BGCD data sets previously studied
in the literature. There was no available implementation of BGCD
that could scale to the size of our data set. We overcame this obstacle
by developing a scalable and performant BGCD implementation4
and certificate parser5, and by running these tools on a Google
Cloud Platform (GCP) machine with 1TB of RAM, using a data-
sharding approach. See Section 4.3 for further details.

4.1 Datasets
4.1.1 Manufacturing Certificates. Manufacturing certificates fol-
low the IEEE Secure Device Identity standard [1], a profile of
PKIX/X509 [8], and are issued by Cisco Cryptographic Services
after a device is assembled but before it it shipped to a customer.
Within Cisco, they are termed Secure Unique Device Identifiers
(SUDI). For some products, the public key in a manufacturing cer-
tificate is generated by the device associated with it, while other
products have keys that are generated by an external Hardware
Security Module (HSM).

We analyzed 226,131,301 certificates issued by Cisco’s Cryp-
tographic Services team up through 2020. The majority of these
certificates had 2048-bit RSA subject keys. Each SUDI certificate
usually contained a distinct Product Identifier (PID) and a distinct
Serial Number (SN) in its subject field. We used the PID to identify
products, and we used the SN to identify distinct devices (Sec-
tion 4.4).

4.1.2 Device-Issued Certificates. Many products do not have man-
ufacturing certificates and instead generate a self-issued certificate
on the customer’s network. To extend the coverage of our testing to
include some of these products, we downloaded a set of certificates
that were obtained from internet scans during Spring 2021. We used
Rapid7’s Project Sonar, which provided access to X.509 certificates
3Section 4.5 describes how to exploit these flaws.
4The C++17 tool batch_gcd; see also its documentation, which can be found at
https://github.com/cisco/mercury/blob/main/doc/batch-gcd.md.
5The C++17 tool cert_analyze.

Certificates Cisco Product ID (PID)
3876 RV042
3254 RV320
2274 RV042G
1809 RV325
519 RV130W-A-K9-NA
397 RV130W-E-K9-G5
393 RV110W-A
380 RV130-K9-NA
341 RV082
284 RV130-K9-G5
260 RV110W-E
180 CP-8841
152 RV180W
149 RV215W-E
142 RV215W-A
134 RV180
115 UCSC-C220-M5SX
110 RV220W
94 RV016
83 AP1G5
74 UCSC-C220-M4S
61 RV120W
58 CP-8851
55 CP-8861
48 CP-7841
36 RV130-WB-K9-NA
34 CP-8865
33 UCSC-C220-M3S
31 CP-7821
29 CP-8811

Table 1: The most common Cisco product IDs (PIDs) present
in the Spring 2021 Sonar SSL data set. The complete list of
Cisco products observed includes over 150 distinct PIDs.

observed when scanning HTTPS endpoints on the public internet.
It records certificates only when they were not seen in previous
scans, so this dataset should be interpreted as TLS certificates that
were newly deployed or newly reachable in Spring 2021, specif-
ically between February 6, 2021 and May 5, 2021. We identified
the certificates generated by Cisco products by the presence of the
string Cisco in the certificate issuer field.

The Spring 2021 data set includes 37.7 million distinct certificates,
only 0.1% ofwhich are fromCisco devices, as detailed later in Table 3.
It includes over 150 distinct Cisco PIDs (Table 1), associated with
Small Business Routers, IP Phones, Unified Computing Systems
(UCS), and WLAN access points.

4.2 Detection Methodology
There are twomain ways that weak entropy shows up in certificates:

Common factors - Two or more RSA keys, generated by dis-
tinct devices, share a common factor. This only occurs for
RSA keys, and it is is incontrovertible evidence of weak en-
tropy.

4

762

https://opendata.rapid7.com/sonar.ssl/
https://github.com/cisco/mercury/blob/main/src/batch_gcd.cc
https://github.com/cisco/mercury/blob/main/doc/batch-gcd.md
https://github.com/cisco/mercury/blob/main/src/cert_analyze.cc

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

void generate_rsa_private_key_nonatomic() {
P = find_prime(get_pseudorandom(get_entropy()));
// the entropy pool may be changed here
Q = find_prime(get_pseudorandom(get_entropy()));

}

void generate_rsa_private_key_atomic() {
X = get_entropy();
P = find_prime(get_pseudorandom(X));
X = advance_pseudorandom(X);
Q = find_prime(get_pseudorandom(X));

}

Figure 4: Pseudocode illustrating RSA private key generation
algorithms that are non-atomic (top) and atomic (bottom) re-
garding entropy use. When used with a weak entropy source,
non-atomic RSA key generation can exhibit either common
factors or common keys, while atomic RSA key generation
can exhibit only common keys. The common factors issue
is specific to RSA, and is inapplicable to Diffie-Hellman key
establishment, including its elliptic curve variants, and other
public key cryptosystems.

Common keys - Two or more keys, generated by distinct de-
vices, are identical. This can occur for any cryptosystem, but
it is harder to detect through the automated batch analysis of
certificates, because it is acceptable for two certificates from
the same device to contain the same key. The distinctness of
the devices can only be determined by analyzing subject or
subject alternative name fields.

Some implementations of the RSA key generation algorithm
will never exhibit common factors and will only exhibit common
keys in weak entropy situations. Common factors occur when the
entropy pool changes in between the generation of the first and
second prime factor, and this can only happen if the algorithm is
not atomic with respect to entropy use, as illustrated in Figure 4.

4.3 Batch GCD
The Batch Greatest Common Divisor (GCD) algorithm is a clever
way to identify common factors in a (potentially very large) number
of RSA public keys [11]. It is computationally intensive, requiring a
random access memory large enough to hold a representation of the
product of all of the integers in the batch. If directly applied to the
large datasets of RSA keys in this study, the product would exceed
the memory capacity of any single cloud instance, as well as the
maximum integer limit of the GNU Multiple Precision Arithmetic
Library (GMP). We instead split the RSA moduli into subsets and
ran batch GCD on all pairs of subsets, similar to Hastings et al. [10].
While appearing to introduce quadratic computational complexity,
surprisingly, this actually optimized for both speed as well as mon-
etary cost. Speed was increased because the computation could be
parallelized across many instances, and also avoided the central
bottleneck of multiplying all moduli into one integer. Cost was also
reduced, because cloud VM pricing was proportional to the product
of compute time and RAM allocated. This means that monetary cost
was already at least quadratic 𝑂 (𝑛2) with respect to the number
of bits of input 𝑛, despite batch GCD being a quasilinear (time)
algorithm. In addition, by splitting the computation into smaller

parts, we reduced the cost’s proportionality constant by enabling
the use of lower-cost spare capacity such as preemptible instances.

4.4 Common Key Test
The common key test has essentially two steps. First, all of the
certificates in the batch that have common keys must be detected.
Second, each set of certificates that has common keys must be
checked to see whether it is associated with a single device that
obtained (or self-issued) a series of certificates with a single key.
To accomplish the first stage, we implemented the –common-key
option to the cert_analyze tool, which writes all of the certificates
with a particular common key into a single output file.

To accomplish the second stage, we analyzed the certificate sub-
ject fields. Certificate data can be very noisy, and certificates that do
not use proper 802.1AR formatting with (Product ID, Serial Number)
are hard to interpret and unfortunately common. The formatting
of the certificates we analyzed varied considerably even within the
same vendor, and sometimes fields that should be present (such as
the 802.1AR serial number) were absent.

We therefore developed vendor-specific code for the purpose of
identifying devices through their manufacturing certificates, with
coverage for many of the most common patterns. The vendor used
802.1AR (PID, SN) to identify its devices, and the most well-formed
encoding was exemplified by a string such as

PID:XY123-4BC SN:WX12-34YZ-A5B6

in the subject serial number field. In other cases, the subject com-
mon name contained a PID and SN concatenated using a hyphen,
for example:

XY-1234-SEP000B4650ACA0

where XY-1234 represents the PID and the rest of the string after
the second hyphen represents the SN. In yet other cases, the SN
was not delimited from other data, but could be detected due to a
predictable format:

LLLYYWWSSSS

where LLL are letters representing the manufacturing location,
YYWW are a numeric encoding of the year and week, and SSSS are
numbers or capital letters that represent a serial ID.

In addition to the PID and SN, we also made use of the ACT2
serial number, which can appear in an optional certificate extension.
Cisco specifies an ASN.1 Object Identifier (OID) to represent the
serial number of an ACT2 chip in the Subject Alternate Name field
of a certificate6. The cert_analyze tool reports the OID and the
associated value as in Figure 6. According to the specification, the
value is a PrintableString with the format ChipID=<chipSN>, where
chipSN is the BASE64-encoded ACT2 chip serial number.

There are several scenarios in which a single device may have
been legitimately issued multiple certificates with the same key.
One scenario is a “gold” device used during a pre-manufacturing
testing process that repeatedly requests certificates from the pro-
duction Certification Authority (CA), resulting in tens of thousands
of certificates that have identical keys and subjects. Another sce-
nario with identical keys and subjects is a reissuing of certificates
before expiration (without changing the certificate public key). A

6ACT2 SUDI CA Certification Practice Statement, Cisco, 2014.

5

763

https://www.cisco.com/security/pki/policies/ACT2_SUDI_CA_CPS_v2.0.pdf

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

Subset A Subset B

Subset C Subset D

• Divide RSA moduli into subsets
• Batch GCD each pair of subsets

𝑁! 𝑁"

×

𝑁!𝑁"𝑁#𝑁$

Subset A 𝑁!𝑁"𝑁#𝑁$

Product Tree Remainder Tree

mod 𝑁!"𝑁"" mod 𝑁#"𝑁$"

mod 𝑁!" mod 𝑁"" mod 𝑁#" mod 𝑁$"

𝑁# 𝑁$

×

Subset B

(cacheable by subset)

/𝑁! /𝑁" /𝑁# /𝑁$

gcd(), 𝑁!) gcd(), 𝑁") gcd(), 𝑁#) gcd(), 𝑁$)

Figure 5: A cost-optimized batch GCD algorithm enables parallelization and scaling beyond RAM limits of single cloud instances,
following Heninger et al. [11] and decoupling further than Hastings et al. [10].

{
"other_name": {
"type_id": "1.3.6.1.4.1.9.21.2.3",
"value":

"13334368697049443d5531524e53544977...41416e7875673d"
}

}

Figure 6: Example of the ACT2 OID in a certificate (value
truncated), represented as JSON by the cert_analyze tool.

trickier example is a product software upgrade that enables pre-
mium features. In this case, the device SN remains the same, but the
PID can potentially change, usually by modifying one letter in the
suffix of the PID to indicate that the device has been upgraded to
enable premium functionality. This is a case where two certificates
with different (PID, SN) pairs are legitimately associated with the
same key. Fortunately, the vendor studied does not reuse SNs across
product families, so the SN can still be used as an identifier for a
single device, even when the PID changes slightly. Therefore, to
search for common key entropy failures, we looked for certificates
with the same public key but different serial numbers.

4.5 Exploitability
Common factors are easy to exploit, as the knowledge of one factor
of an RSA public key makes it trivial to find the corresponding RSA
private key7. Common keys cannot be exploited as directly.

To thoroughly exploit a product with a weak entropy source,
an attacker should obtain an instance of the device, force it to
generate many public key pairs, and record the private keys. By
duplicating the environment used for manufacturing or device-
issued certificates, the attacker can build up a set of typical private
keys, which can then be used in a manner similar to a password
dictionary attack. If a product suffers from LIE on successive reboots,
then any cryptographic protocol it provides that uses key or nonce
generation can be exploited. If it generates [EC]DSA signatures, a

7The batch_gcd tool can return the private key, for use in demonstrating the
vulnerability.

dictionary of 𝑟 -values can be used to find its private signing key. If
it generates a WiFi encryption key, or a VPN encryption key, then a
dictionary of those keys can be used to passively decrypt traffic. We
call these the typical nonce and typical key attacks, respectively.
They would be especially damaging if an attacker could cause the
victim’s device to reboot, e.g. through resource exhaustion or some
other vulnerability.

The effectiveness of a typical key attack is characterized as fol-
lows: an attacker that generates a set of typical keys of size 𝑘 , then
obtains a network session created immediately after bootup from a
target device not under its control, will have probability 𝑝 of being
able to decrypt the session, because the target device’s key will be
in the typical set. The function 𝑝 (𝑘) characterizes the vulnerability
of the system, and is determined by the entropy of the source (un-
der the reasonable assumption that the asymptotic equipartition
property applies). Alternatively, a convenient characterization of
the vulnerability may be to define 𝑘 1

2
as the number of keys such

that 𝑝 (𝑘 1
2
) = 1

2 . The choice of success probability is arbitrary but
conventional.

It is an important and scientifically interesting open question to
better understand 𝑝 (𝑘) for different products. For some products,
where a large number of duplicate keys were discovered, it is likely
that a typical key attack would be very effective. For other products,
only a few collisions occurred and the size of the typical set might
run into the hundreds of millions or billions.

These attacks can be recast as a methodology for testing entropy,
by developing a test harness that initiates restarts in a target device,
then interacts with that device using a cryptographic protocol, and
records the keys, nonces, and signatures. In the next section, we
describe how we estimated the typical set.

4.6 Effective Entropy: Typical Set of Keys
Once weak entropy sources are discovered, it can be useful to
quantify the effective entropy. In Section 4.5 above, we outlined
a “typical keys” attack, in which an attacker generates the set of
typical keys (by forcing many reboots). The important question
about such attacks is: how big is the typical set? This can help
prioritize the devices at greatest risk of compromise, as well as aid

6

764

https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Typical_set
https://en.wikipedia.org/wiki/Typical_set

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

in debugging and identifying the component where the entropy
failure occurred.

We present a simple model, which can be applied to a single
product in our results below (Table 4). Let 𝐾 be the set of all keys,
and 𝑇 ⊂ 𝐾 be the set of typical keys. Let 𝑚 denote the number
of certificates, each of which contains a key that is generated at
random (and thus will be in the typical set with high probability).
Let 𝑑 denote the number of distinct keys found, where 𝑑 ≤ 𝑚. Our
goal is to estimate |𝑇 |.

One way to estimate the size of the typical set is to formulate it as
the following combinatorial problem. Suppose there is an urn with
an unknown number of balls (call it 𝑛), where each ball is known to
be a different color. We draw with replacement 𝑘 balls, and discover
that the balls drawn cover only 𝑑 distinct colors, where 𝑑 < 𝑘 . We
would like to estimate 𝑛, the number of balls in the urn. Specifically,
we would like the maximum likelihood estimate of 𝑛, i.e., the 𝑛
that maximizes the probability of observing 𝑑 distinct colors when
making 𝑘 draws with replacement.

4.6.1 Likelihood Function - Definition. In order to specify the like-
lihood function that we would like to maximize, we begin with
some definitions. Define a “𝑘-draw” to be an ordered sequence of
𝑘 balls drawn with replacement from an urn. Further define a “𝑑-
color 𝑘-draw” to be a 𝑘-draw that is composed of exactly 𝑑 distinct
colors, where 𝑑 ≤ 𝑘 . We can now define the likelihood function
𝐿(𝑛, 𝑘 ;𝑑) = Pr(𝑑 |𝑛, 𝑘) to be the probability that a 𝑘-draw from an
𝑛-ball urn is also a 𝑑-color 𝑘-draw. It can be shown that:

𝐿(𝑛, 𝑘 ;𝑑) = Pr(𝑑 |𝑛, 𝑘) = 1
𝑛𝑘

(
𝑛

𝑑

) 𝑑∑︁
𝑖=0

(−1)𝑖
(
𝑑

𝑖

)
(𝑑 − 𝑖)𝑘 .

In Appendix A and Appendix B, we give an intuitive example and
proof of this expression. In Section 4.6.2, we hold 𝑘 and 𝑑 fixed, and
determine the 𝑛 that maximizes 𝐿(𝑛, 𝑘 ;𝑑).

4.6.2 Maximum Likelihood Estimate. Recall that the objective was
to estimate the size of the urn (𝑛), given the observed data: 𝑘 draws
resulted in 𝑑 distinct colors drawn (𝑑 < 𝑘). The maximum likeli-
hood estimate (MLE) is defined as follows. Consider 𝐿(𝑛, 𝑘 ;𝑑) as a
function of 𝑛, with 𝑑 and 𝑘 fixed.

𝐿(𝑛, 𝑘 ;𝑑) = 1
𝑛𝑘

(
𝑛

𝑑

) 𝑑∑︁
𝑖=0

(−1)𝑖
(
𝑑

𝑖

)
(𝑑 − 𝑖)𝑘

We would like to determine the 𝑛 = �̂� that maximizes 𝐿(𝑛, 𝑘 ;𝑑).
For example, if (𝑑, 𝑘) = (95, 100), then �̂� = 957, as illustrated in
Figure 7.

Finding the MLE involves a simplification step, followed by nu-
merical optimization. Since the summation does not depend on
𝑛, maximizing 𝐿(𝑛, 𝑘 ;𝑑) is equivalent to maximizing the function
𝑓 (𝑛) = 1

𝑛𝑘

(𝑛
𝑑

)
. That is,

�̂� = argmax
𝑛

𝐿(𝑛, 𝑘, 𝑑) = argmax
𝑛

𝑓 (𝑛) = argmax
𝑛

1
𝑛𝑘

(
𝑛

𝑑

)
.

Although the binomial coefficient
(𝑛
𝑑

)
can be differentiated, enabling

us to differentiate 𝑓 (𝑛) and set it equal to zero, the resulting optimal
𝑛 must satisfy

𝑘

𝑛
=

𝑑−1∑︁
𝑖=0

1
𝑛 − 𝑖

Figure 7: Likelihood vs urn size (𝑛) for 𝑘 = 100 draws and
𝑑 = 95 distinct colors. The maximum likelihood estimate
(MLE) for 𝑛 is �̂� = 957.

Product ID Product Support Dates
CP-6901 Unified IP Phone 6901 Orderable
RV130W-A-K9-NA RV130W VPN Router EoS: 30-11-2024
WS-SVC-WISM2-K9 Wireless Services Module 2 EoS: 30-4-2022
AIR-CT5508-K9 5508 Wireless Controller EoVSS: 31-7-2021
AIR-CT2504-K9 2504 Wireless Controller EoVSS: 18-4-2021

Table 2: Products with weak entropy that were recently sold
or supported, along with the relevant end-of-support dates.

which does not lend itself to a simple closed-form solution. Instead,
𝑓 (𝑛) can be extended to the real numbers by writing it in terms of
the gamma function Γ(𝑛), and then maximized by using Brent’s
algorithm to perform bounded optimization on ln 𝑓 (𝑛):
ln 𝑓 (𝑛) = −𝑘 ln𝑛 + ln Γ(𝑛 + 1) − ln Γ(𝑛 − 𝑑 + 1) − ln Γ(𝑑 + 1).

The optimum �̂� value coincides well with intuition. When 𝑑 ≪ 𝑘 ,
there are likely few balls in the urn, so �̂� ≈ 𝑑 . At the other extreme,
when 𝑑 = 𝑘 − 1, the scenario is approximately a birthday problem
where a single collision occurs, and �̂� ≈ 𝑘 (𝑘−1)/2. In this latter case,
coincidentally, the value of 𝐿(�̂�, 𝑘, 𝑑) is close to 1/𝑒 . Our formulation
was easily implemented in a few lines of Python code that leverages
the bounded optimization functionality provided by SciPy [22].

5 RESULTS
We found weak keys in certificates generated by several Cisco prod-
uct families, including Wireless Local Area Network (WLAN), IP
Telephony, Small Business Routers, and Linksys (both before and af-
ter its divestiture and sale to Belkin in 2013). Weak keys first started
appearing in 2008, hit a peak of 250,000 per month in 2012, and have
tapered off, with few appearing in 2020. Table 4 summarizes these
findings, which include products not implicated in any prior studies.
Most of the affected products were past their End-of-Support (EoS)
or End-of-Vulnerability/Security Support (EoVSS) dates, but some
were not, as summarized in Table 2 and detailed fully in Table 4.
Note that these dates do not preclude a customer from purchasing
an extended support contract.

From the manufacturing certificate dataset, we found common
factors in ten distinct products, and common keys in many more.
Most of the products that exhibited common factors also exhibited

7

765

https://www.cisco.com/c/en/us/support/collaboration-endpoints/unified-ip-phone-6901/model.html
https://www.cisco.com/c/en/us/support/routers/rv130w-wireless-n-multifunction-vpn-router/model.html
https://www.cisco.com/c/en/us/support/interfaces-modules/wireless-services-module-2-wism2/model.html
https://www.cisco.com/c/en/us/products/collateral/wireless/5500-series-wireless-controllers/eos-eol-notice-c51-740221.html
https://www.cisco.com/c/en/us/products/collateral/wireless/2504-wireless-controller/eos-eol-notice-c51-740645.html

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

Vendor Certificates RSA Keys Factored Keys
Non-Cisco 37,625,299 29,110,765 2,700

Cisco 36,987 34,845 246
Total 37,662,286 29,145,610 2,946

Table 3: Summary of the Spring 2021 Sonar SSL certificates
and RSA keys that appeared Feb 6–May 5, 2021. All entries
represent counts of distinct certificates and keys.

common keys, which is strong evidence that the common keys
are caused by weak entropy. For some products, the public key in
a manufacturing certificate is generated by the device associated
with it, while other products have keys that are generated by an
external Hardware Security Module (HSM). All the products we
found with weak keys had generated their own.

We also identified amultiproduct key that appears in the man-
ufacturing certificates of nearly five million devices, across several
different product families (CP-69xx, CP-89xx, CP-99xx, ATA-187,
and Cius). These products are marked with a † in Table 4. The multi-
product key is an unusual case, because in most other common-key
instances, only two devices share a particular key. Not every device
in the multiproduct key set has the same key, and it appears that the
more complex devices have more diversity of keys. This suggests
that these products share a weak entropy source, and that its quality
varies across products.

For the Spring 2021 internet scan dataset, Table 3 summarizes
the findings of factorable RSA keys. The BGCD test discovered
2,632 factorable RSA keys in the Spring 2021 data; 246 were from
Cisco products, and the majority of those were Cisco-Linksys. The
remainder were from a wide variety of vendors, as detailed in Ta-
ble 5. The three non-Linksys Cisco devices that exhibited common
factors were are all Small Business Routers (see the last three rows
of Table 4). Most of the Cisco PIDs did not exhibit weak keys. How-
ever, the data set contained fewer than 4000 certificates for each
product ID, and the small size limits the effectiveness of the BGCD
tests.

In addition, the common key test could not be applied to the
Spring 2021 dataset. Similar to previous studies [11], TLS certificates
retrieved from internet scans do not often contain device identity
markers such as a serial number. Therefore, it was not possible to
determine whether two certificates with the same key originated
from the same device or different devices.

For all products whosemanufacturing certificates exhibited weak
keys in Table 4, we computed the maximum likelihood estimate
for the size of the typical set of keys (see the column labeled
log2 |TypicalSet|). For some products with the multiproduct key,
half or more of the keys were common, and it is likely that a typical
key attack would be very effective. For other products, such as the
AIR-CT2504-K9, which had only 117 common keys in 451,417 cer-
tificates, the estimated size of the typical set was 230.6 ≈ 1.6 billion.

6 DISCUSSION
Perhaps the most surprising result of this study was the discovery
of the multiproduct key that was common across nearly five million
devices (CVE-2022-20817). This discovery was made possible by

Product ID Fa
ct
or
ab
le
Ce

rt
s

Co
m
m
on

-K
ey

Ce
rt
s

To
ta
lC

er
ts

lo
g 2

|T
yp

ic
al
Se
t|

D
at
es

AIR-CT2504-K9 269 117 451417 30.6 2010-2020
AIR-CT5508-K9 617 93 256867 28.3 2008-2020
AIR-WLC4402-*-K9 8 9 73306 29.5 2006-2016
WS-SVC-WISM2-K9 30 19472 25.6 2010-2019
SVC-WiSM 6 18 40443 27.2 2006-2017
DMC250 (Linksys) 67 62 6370 19.7 2008-2009
DMP100 (Linksys) 87 139 7505 19.2 2008-2009
DMRW1000 (Linksys) 118 99 7343 19.4 2008-2009
PHM1200 (Linksys) 15 2043 20.0 2006-2007
VGA2000 (Linksys) 225 71 1033 13.4 2006-2007
C1100 (Aironet) 258 217623 27.5 2006-2015
C1130 2562 2464216 31.1 2006-2019
C1200 502 420772 28.4 2006-2015
C1240 2524 2521522 31.2 2006-2019
C1250 52 506938 32.2 2006-2019
C1310 216 191656 27.3 2006-2018
C1410 26 22553 24.2 2006-2016
C3201 23 24352 24.6 2006-2013
CP-7970 3 525683 36.0 2003-2016
DMC350 12 429 13.9 2008-2009
SVR200 2 2360 21.4 2007-2008
ATA-187† 245398 544356 20.0 2009-2014
CIUS-7/Cius/CiusSP† 39539 53137 15.7 2010-2012
CP-6901 † 219123 460401 19.6 2009-2020
CP-6911† 162965 193647 17.3 2009-2015
CP-6921† 1684990 3430898 22.5 2009-2014
CP-6922† 121 335 9.6 2011-2013
CP-6941† 782396 1545282 21.3 2009-2014
CP-6942† 87 324 10.1 2011-2013
CP-6945† 264462 813491 21.1 2010-2014
CP-6946† 193 549 10.4 2011-2013
CP-6951† 150 157 6.7 2010-2010
CP-6961† 145876 374045 19.7 2009-2014
CP-6962† 87 375 10.5 2011-2013
CP-8941† 87981 247542 19.2 2010-2014
CP-8945† 307134 1542140 22.8 2010-2015
CP-8961† 317261 951749 21.3 2009-2017
CP-9945† 258 261 7.4 2010-2010
CP-9951† 297769 480704 19.2 2009-2016
CP-9965† 394 410 8.1 2010-2010
CP-9971† 391091 695781 19.9 2008-2017
RV130W-A-K9-NA ‡ 2 – – – 2021
RV120W ‡ 7 – – – 2021
RV220W ‡ 30 – – – 2021

Table 4: Cisco products with weak keys in devices certificates.
“Factorable” means that two or more certificates had RSA
public keys with common factors. “Common-key” means
that multiple certificates had identical keys but distinct sub-
jects, and appear to be distinct devices. A product ID marked
with † exhibits certificates with the multiproduct key (Sec-
tion 5). Certificates for product IDs marked with ‡ have been
observed only in the device-issued data set (Section 4.1.2);
dashes indicate missing data.

8

766

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

Figure 8: Cisco 6901 Unified IP Phone.

Figure 9: Cisco Small Business RV130n Wireless-N Multi-
function VPN Router.

Figure 10: Cisco 2504 Wireless Controller.

Figure 11: Cisco 5508 Wireless Controller.

the common key test (Section 4.4). To our knowledge, this is the
first study to test manufacturing certificates for unintentional key
collisions across devices at such a large scale.

With the help of the product team, we investigated the most
recently sold product affected by the multiproduct key: the CP-
6901, a low-margin IP Phone that lacks a hardware entropy source.
The device and its run-time operating system was FIPS-140 cer-
tified. However, for its first boot on the manufacturing floor, the
device uses a different operating system—a diagnostic image (Mon-
taVista 3.4.3 based on Linux kernel 2.6.10 for MIPS) responsible
for self-tests and initialization, including key generation and the
installation of a manufacturing certificate. Since the device does
not have a hardware entropy source, the OS of the diagnostic image
gathers entropy by observing the timing between network inter-
rupts, and uses that entropy for RSA key generation. See Figure 13
for a pseudocode representation of this process. The design implies
that when the device is first booted, it is absolutely critical that the
network to which it is connected has sufficiently random traffic to
seed the device random number generator. The intention was that
a random traffic generator would be used on the network to supply
entropy to devices during their initial boot.

Ultimately, the exact network environment that was used to
initialize these devices could no longer be replicated at the time

Figure 12: Cisco Wireless Services Module 2.

Weak Certs Issuer: Organization Name
1524 TPLINK
700 (unknown)
227 DrayTek Corp.
211 Cisco-Linksys, LLC
194 HTTPS Mgmt Cert for SonicWALL
187 Tridium
106 Netgear Inc.
74 Kronos Incorporated
39 Cisco Systems, Inc.
37 D-Link
32 SAMSUNG
24 Technicolor
19 D-Link Corporation
15 Honeywell
11 Linksys International Inc.
11 Fortinet Ltd.
7 Advantech B+B SmartWorx s.r.o.
5 Archer C20
4 D-Link Taiwan
4 D-LINK
3 Huawei
3 Hewlett-Packard Company
2 HP
2 Gongjing
2 CalAmp Corp.
2 Primax
2 Alarm.com

Table 5: Vendors listed in weak certificates with factorable
RSA keys.

of this study. However, the design of the system narrows the cul-
prit to a number of possibilities: the network traffic generator may
have failed or not been turned on, the switch connecting the traffic
generator to the phone may have failed, or some other malfunction
caused the network link to be either too quiet or too saturated to
properly seed the device RNG. What is clear from this investigation,
regardless of which was the ultimate cause, is that proper RSA key
generation for this device depended on the composition of several
systems that all had to function properly: the network environment,
the adjacent network hardware, the device hardware, the operat-
ing system, and the key generation software. A failure in any of
these systems could cause a catastrophic entropy failure and the
generation of weak RSA keys.

Similarly, the CT2504 and CT5508 wireless controllers both used
version 2.6.21 of the Linux Kernel, making it possible that they were
affected by CVE-2007-2453. In this case, the devices had a hardware

9

767

https://security-tracker.debian.org/tracker/CVE-2007-2453

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

// 1. Maintain a 256-byte entropy buffer.
INT8 *pEntropyData = &buffer[0]; // pointer: initially at buffer[0]

// 2. On packet arrival, if entropy buffer is not full, read a MIPS
// system counter as a 4-byte cntVal using assembly:
asm volatile("mfc0 %0,$9; nop" : "=r"(count));

// 3. Add 4 bits of MIPS system counter into entropy pool
if (PKTCNT_IS_ODD) /* high 4 bits */
{

*pEntropyData = ((INT8)(cntVal & 0x0000000f) << 4);
}
if (PKTCNT_IS_EVEN) /* low 4 bits */
{

*pEntropyData = ((INT8)(cntVal & 0x0000000f);
pEntropyData++; // advance to next byte of entropy buffer

}

// 4. Later, when key generation requires a number of random bytes,
// entropy data generated earlier will be returned first.

Figure 13: Pseudocode illustrating theCP-6901 initial entropy
generation based on network interrupts. During manufac-
turing, this occurs on first boot into a diagnostic image.

entropy source (Cavium), but only used that hardware in FIPS-140
mode. This means that a configuration oversight during the initial
key generation phase may have caused the entropy failures for the
CT2504 and CT5508. Fortunately, there exists a workaround: users
may generate a Locally Significant Certificate (LSC) in FIPS mode,
and use that instead of the Manufacturer Installed Certificate (MIC)
for device identity and authentication.

Finally, the RV130W Small Business Routers were fully out-
sourced in their design and production. Since Cisco no longer had
a relationship with the contract manufacturer at the time of this
study, discovering the root cause of the entropy failure would have
required prohibitive reverse engineering effort. In addition, the lack
of good mechanisms to patch these products increased the number
of applicable vulnerabilities. Moreover, certificates in this data set
were publicly accessible through internet scans, putting the devices
at an increased risk of compromise. For example, we discovered a
pair of RV130W-A-K9-NA keys that shared a common factor. Given
that there were only 519 RV130W-A-K9-NA certificates in the data
set (and a total of 981 instances of RV130W-∗), this suggests a sig-
nificant entropy weakness. The best mitigation for these routers is
to avoid enabling the administrative portal on the WAN interface.

Twomain recommendations arise from investigating the entropy
failures revealed by our testing: (1) use hardware entropy sources,
and (2) proactively test device public keys for proper entropy.

Using hardware entropy sources is becoming less costly: many
modern CPUs and SoCs contain hardware entropy sources, in-
cluding Intel and AMD through the RDRAND instruction, and the
ARM-based Broadcom 2835 used in the Raspberry Pi. However,
we recognize that for low-margin products, cost will always be
an important factor. In addition, as demonstrated by the CT2504
and CT5508, the mere presence of a hardware entropy source may
not be sufficient—the default configuration may disable it, e.g., for
performance reasons. ACT2 and Aikido, the Cisco Trusted Platform
Modules (TPMs), provide a hardware trust anchor, and can provide
a seed for a software-based entropy pool, but they cannot directly

provide entropy for products because they communicate across
a slow serial bus. If performance is critical (and it often is), one
solution is to seed software entropy from hardware, even if key
generation is performed in software. This should be done whether
the device is in FIPS-140 mode or not.

Nevertheless, the potential for mistakes underlines the need for
our second recommendation: end-to-end testing of a large popu-
lation of devices. The earlier in the product lifecycle that we can
detect entropy issues, the better. Batch testing of device-generated
keys could be proactively applied during pre-manufacturing testing,
or during manufacturing. The tests we developed can be automated
to enable continuous detection. Products with weak manufacturing
certificates may have further weak entropy issues. For some prod-
ucts, further entropy testing may be warranted. One caveat is that
batch testing the manufacturing certificates of products that use
ACT2 provides no information about their entropy sources, because
those key pairs are generated by a Safenet HSM. This is a very sound
way to generate keys, but a new data collection effort is needed
to test the entropy of these important products. Additional data,
data sources and tests would broaden and strengthen the assurance
provided. Data collection and analysis should continue, especially
for device-issued certificates, and new tests such as SSH device
keys, the typical key attack (Section 4.5) and repeated 𝑟 -values in
[EC]DSA signatures should be pursued.

7 LIMITATIONS
We discuss a number of limitations. First, an obvious restriction
of the batch GCD algorithm for detecting common factors is that
it applies only to RSA keys. Second, although the duplicate key
detection methodology applies to any public key algorithm, a fun-
damental requirement is that it be possible to distinguish between
distinct devices. That is, it must be possible to detect that two or
more distinct devices are using the same key pair (which is concern-
ing), as opposed to a single device that has been issued multiple
certificates containing the same key (which is often acceptable).
Identification of distinct devices is inherently vendor-specific; for
the single vendor in our study, it was possible to write custom code
to parse the 802.1AR device strings in order to identify product ID
and serial number in X.509 certificates. This may not be possible
for all vendors. Finally, root cause analysis for entropy failures can
require substantial human effort, navigating organizational bound-
aries and different product teams. A device vendor’s certification
authority (CA) may be in a good position to observe keys across
a large number of manufactured devices. We were fortunate that
each identified entropy failure was followed by close collabora-
tion between the CA, the vendor’s PSIRT, and the product team to
identify the cause and develop a mitigation. We recognize that or-
ganizational factors may contribute to the industry-wide challenge
of detecting and preventing weak entropy in manufactured devices.

8 EFFICIENT POPULATION TESTING
Based on the authors’ experience with the Cisco Certification Au-
thority (CA), we offer some recommendations on how to conduct
population-wide testing efficiently. Because millions of devices are
not manufactured instantaneously, the Cisco CA provides a ser-
vice that signs certificates as new devices are activated for the first

10

768

https://en.wikipedia.org/wiki/RDRAND
https://github.com/torvalds/linux/blob/master/drivers/char/hw_random/bcm2835-rng.c

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

time during manufacturing. Thus, each night there exists a batch of
certificates corresponding to the devices that were manufactured
that day. By running our analysis periodically (nightly or weekly),
it is possible to detect issues early in the production lifetime, so
that the key generation process can be fixed for devices not yet
manufactured, and software updates and mitigation procedures can
be created for devices already sold to end-users.

As noted earlier, the common factor test is computationally in-
tensive and limited to RSA. However, RSA is still in widespread
use (e.g., in Cisco products), and needs to be addressed in practice.
Fortunately, the computational cost is not prohibitive; our analysis
of over 200 million certificates can be run every 3-4 days on GCP
using one m1-megamem-96 instance (totaling a few hundred dollars
USD), a cost that is likely well within the reach of most device
vendors. In fact, after the initial study was completed, the Cisco
CA expressed preliminary interest in running the common key and
common factor analysis on new certificates that are issued on a
nightly basis. One way this can be done even more efficiently is to
save an intermediate result of the previous batch GCD computa-
tions, which we sketch below. Suppose 𝑘 certificates have already
been checked, and 𝑗 certificates have been created in the latest
batch. If we stored the product 𝐴 = 𝑁1𝑁2 · · ·𝑁𝑘 of the already-
checked moduli (𝑁1, . . . , 𝑁𝑘), then given the product 𝐴, checking
the new moduli (𝑁𝑘+1, . . . , 𝑁𝑘+𝑗) against themselves and against
the existing set can be done as follows. Use the standard product
tree to compute 𝐵 = 𝑁𝑘+1𝑁𝑘+2 · · ·𝑁𝑘+𝑗 ; then compute the product
𝐵′ = 𝐴 · 𝐵. Finally, use 𝐵′ as the root of the remainder tree for
checking 𝑁𝑘+1, . . . , 𝑁𝑘+𝑗 . This can reduce the incremental work
factor significantly. Asymptotically, this still amounts to an 𝑂 (𝑛2)
computation over time, but the constant is much smaller, and in
practice there are useful ways to limit the size of 𝑛: check subsets
of certificates from related product families, and age-out devices
that are end-of-life.

9 ETHICAL CONSIDERATIONS
We worked closely with the vendor PSIRT to investigate vulnera-
bilities found in products and coordinated the release of this work
with the timing of advisory publications to affected customers. For
the public internet scans, we also contacted the third party vendors
that appeared in the issuer fields of certificates that exhibited weak
keys. Some vendors responded positively: for example, after we
communicated our methodology, DrayTek quickly replicated the
weak key findings with an internal population test and developed
firmware mitigations. Advantech traced their weak keys to End-
of-Life devices without hardware RNGs, and published a security
advisory with suggested workarounds [2].

10 CONCLUSION
A good entropy source is critical for cryptography, and this study
demonstrates that a combination of the Low Initial Entropy (LIE)
problem and misconfiguration of manufacturing processes has re-
sulted in the generation of weak keys in millions of device certifi-
cates in the last decade. Detection of weak entropy best accom-
plished through population testing of purportedly random values
in the final output or shipping state of a product. Testing a sin-
gle device repeatedly will not reveal LIE issues. Neither will unit

tests suffice: a bug in any stage of device manufacturing can re-
sult in entropy failure, whether the bug is in hardware, software,
configuration, or a composition of manufacturing stages. Fortu-
nately, a large-scale end-to-end testing strategy can help detect
entropy failures, even when devices originate from heterogenous
manufacturing environments, and even when not all devices have
hardware random number generators (especially lower-margin de-
vices). Moreover, once an entropy weakness is discovered, entropy
pool size estimation can help a vendor debug the root cause, as
well as estimate the effort required for an attacker to exploit the
weakness. A vendor’s certification authority (CA) is often well-
positioned to observe keys across a large product portfolio. Thus,
we recommend a collaboration between a vendor CA, the product
teams, and a vendor’s PSIRT in order to provide early detection
and perhaps prevention of large scale entropy failures in future
network devices.

ACKNOWLEDGMENTS
We gratefully thank Eric Hampshire and Anita Shah for providing
us with a complete dump of the many certificates that the Cisco
certification authority has issued, Bill Sulzen for help understand-
ing the processes around certificate issuance, and Blake Anderson
for providing certificates from Cisco’s operational network. Ann
Chen, Michael Schueler, and Dario Ciccarone of Cisco PSIRT coor-
dinated the investigation of these vulnerabilities. And numerous
members of product teams helped provide deep dives into their
products’ internals in order to investigate their entropy generation
mechanisms: Shijie Zhang, Carrie Wu, Steve Yu, Karrthik Venu,
Channamallikarjuna Patil, Satyanarayana Yara.

REFERENCES
[1] IEEE 802.1AR. 2018. IEEE Standard for Local and Metropolitan Area Networks -

Secure Device Identity. IEEE Std 802.1AR-2018 (Revision of IEEE Std 802.1AR-2009)
(2018). https://doi.org/10.1109/IEEESTD.2018.8423794

[2] Advantech. 2023. Security Advisory SA-2023-01: v2 Products May Generate Insuffi-
ciently Random Keys. Retrieved October 24, 2023 from https://icr.advantech.cz/
support/router-models/download/511/sa-2023-01-insufficient-randomness.pdf

[3] Daniel J. Bernstein. 2004. How to find smooth parts of integers. http:// cr.yp.to/
papers.html#smoothparts (2004).

[4] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia
Heninger, Tanja Lange, and Nicko van Someren. 2013. Factoring RSA Keys from
Certified Smart Cards: Coppersmith in the Wild. In Advances in Cryptology -
ASIACRYPT 2013. Springer Berlin Heidelberg, Berlin, Heidelberg, 341–360.

[5] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael
Naehrig, and Eric Wustrow. 2014. Elliptic Curve Cryptography in Practice. In
Financial Cryptography and Data Security. Springer Berlin Heidelberg, Berlin,
Heidelberg, 157–175.

[6] Enrico Branca, Farzaneh Abazari, Ronald Rivera Carranza, and Natalia
Stakhanova. 2021. Origin Attribution of RSA Public Keys. In Security and Privacy
in Communication Networks – 17th EAI International Conference (Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, Vol. 398). Springer. https://doi.org/10.1007/978-3-030-90019-9_19

[7] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla,
and Hovav Shacham. 2018. Where Did I Leave My Keys? Lessons from the
Juniper Dual EC Incident. Commun. ACM 61, 11 (Oct 2018), 148–155. https:
//doi.org/10.1145/3266291

[8] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and Tim Polk. 2008. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280. IETF. http://tools.ietf.org/rfc/
rfc5280.txt

[9] Brian Dawkins. 1991. Siobhan’s Problem: The Coupon Collector Revisited. The
American Statistician 45, 1 (1991).

[10] Marcella Hastings, Joshua Fried, and Nadia Heninger. 2016. Weak Keys Remain
Widespread in Network Devices. In ACM Internet Measurement Conference. http:
//dl.acm.org/citation.cfm?id=2987486

11

769

https://doi.org/10.1109/IEEESTD.2018.8423794
https://icr.advantech.cz/support/router-models/download/511/sa-2023-01-insufficient-randomness.pdf
https://icr.advantech.cz/support/router-models/download/511/sa-2023-01-insufficient-randomness.pdf
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
https://doi.org/10.1007/978-3-030-90019-9_19
https://doi.org/10.1145/3266291
https://doi.org/10.1145/3266291
http://tools.ietf.org/rfc/rfc5280.txt
http://tools.ietf.org/rfc/rfc5280.txt
http://dl.acm.org/citation.cfm?id=2987486
http://dl.acm.org/citation.cfm?id=2987486

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Chi et al.

[11] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2012.
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network De-
vices. In 21th USENIX Security Symposium. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/heninger

[12] Jonathan Kilgallin and Ross Vasko. 2019. Factoring RSA Keys in the IoT Era. In
IEEE International Conference on Trust, Privacy and Security in Intelligent Systems
and Applications.

[13] Eric Langford and Rebecca Langford. 2002. Solution of the Inverse Coupon
Collector’s Problem. The Mathematical Scientist 27 (2002).

[14] David McGrew, Blake Anderson, Scott Fluhrer, and Chris Shenefiel. 2017. PRNG
Failures and TLS Vulnerabilities in the Wild. In Real World Crypto (RWC).

[15] James D. Nichols, Barry R. Noon, S. Lynne Stokes, and James E. Hines. 1981.
Remarks on the Use of Mark-Recapture Methodology in Estimating Avian Popu-
lation Size. Studies in Avian Biology 6 (1981).

[16] National Institute of Standards and Technology. 2001. Security Requirements for
Cryptographic Modules. Federal Information Processing Standards Publications
(FIPS PUBS) 140-2. Change Notice 2 December 03, 2002 (2001). https://doi.org/
10.6028/nist.fips.140-2

[17] National Institute of Standards and Technology. 2003. Implementa-
tion Guidance for FIPS 140-2 and the Cryptographic Module Validation
Program. https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-
Validation-Program/documents/fips140-2/FIPS1402IG.pdf. Last Update March
17, 2023 (2003).

[18] National Institute of Standards and Technology. 2019. Security Requirements for
Cryptographic Modules. Federal Information Processing Standards Publications
(FIPS PUBS) 140-3. Published March 22, 2019 (2019). https://doi.org/10.6028/
NIST.FIPS.140-3

[19] Richard P. Stanley. 2011. Enumerative Combinatorics (2nd ed.). Cambridge Studies
in Advanced Mathematics, Vol. 1. Cambridge University Press. https://doi.org/
10.1017/CBO9781139058520

[20] Petr Svenda, Matús Nemec, Peter Sekan, Rudolf Kvasnovský, David Formánek,
David Komárek, and Vashek Matyás. 2016. The Million-Key Question – In-
vestigating the Origins of RSA Public Keys. In 25th USENIX Security Sympo-
sium. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/svenda

[21] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L.
Baish, and Mike Boyle. 2018. Recommendation for the Entropy Sources Used for
Random Bit Generation. National Institute of Standards and Technology Special
Publication (SP) 800-90B. (2018). https://doi.org/10.6028/NIST.SP.800-90B

[22] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J.
Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods
17 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2

A LIKELIHOOD FUNCTION - SMALL
EXAMPLE

In Section 4.6.1, we claimed that the following expression represents
the probability that a 𝑘-draw from an 𝑛-ball urn is also a 𝑑-color
𝑘-draw:

𝐿(𝑛, 𝑘 ;𝑑) = Pr(𝑑 |𝑛, 𝑘) = 1
𝑛𝑘

(
𝑛

𝑑

) 𝑑∑︁
𝑖=0

(−1)𝑖
(
𝑑

𝑖

)
(𝑑 − 𝑖)𝑘 .

Before proving the general case in Appendix B, we build intuition
with a small example: 𝑛 = 10, 𝑘 = 5, 𝑑 = 3. The number of 5-draws
(of any colors) from a 10-ball urn is 105. To compute Pr(𝑑 = 3|𝑛 =

10, 𝑘 = 5), we also need to know how many of the 5-draws are
compromised of exactly 3 distinct colors, i.e., how many are 3-color
5-draws.

Enumerating the 3-color 5-draws from a 10-ball urn can be con-
ceptually broken up into two steps.

(1) Choose 3 out of the 10 colors.
(2) Generate all 3-color 5-draws using only the 3 chosen colors.

The first step has
(10
3
)
possibilities, and the second step can be com-

puted using the principle of inclusion-exclusion in the following

manner. Let 𝑆 be the set of all 5-draws that use only the 3 chosen
colors from the first step (but not necessarily all 3 colors). Since each
draw can be any of the three colors, |𝑆 | = 35. For 𝑖 ∈ {1, 2, 3}, let𝑄𝑖

be the subset of 𝑆 that does not contain color 𝑖 . The cardinalities of
the 𝑄𝑖 and their intersections are:

• |𝑄𝑖 | = (3 − 1)5 = 32 for all 𝑖 . These are the 5-draws in 𝑆 that
do not use the color 𝑖 .

•
��𝑄𝑖 ∩𝑄 𝑗

�� = (3 − 2)5 = 1 for all 𝑖 ≠ 𝑗 . These are the 5-draws
in 𝑆 that use neither color 𝑖 nor color 𝑗 .

• |𝑄1 ∩𝑄2 ∩𝑄3 | = (3 − 3)5 = 0. There are no 5-draws in 𝑆
that use none of the 3 chosen colors, since 𝑆 is restricted to
those colors.

We wish to compute
���𝑄1 ∩𝑄2 ∩𝑄3

���, i.e., the number of 5-draws in 𝑆
that actually use all 3 colors. This can done by applying the principle
of inclusion-exclusion. (Section B gives a concise statement in terms
of Stirling numbers of the second kind, but inclusion-exclusion
provides the combinatorial basis of the formula.)���𝑄1 ∩𝑄2 ∩𝑄3

��� = |𝑆 | −
���𝑄1 ∩𝑄2 ∩𝑄3

���
= |𝑆 | − |𝑄1 ∪𝑄2 ∪𝑄3 |

= |𝑆 | −
∑︁
𝑖

|𝑄𝑖 | +
∑︁
𝑖≠𝑗

��𝑄𝑖 ∩𝑄 𝑗

�� − |𝑄1 ∩𝑄2 ∩𝑄3 |

= |𝑆 | −
(
3
1

)
|𝑄1 | +

(
3
2

)
|𝑄1 ∩𝑄2 | − |𝑄1 ∩𝑄2 ∩𝑄3 |

=

(
3
0

)
35 −

(
3
1

)
25 +

(
3
2

)
15 −

(
3
3

)
05

= 150.

The number of 3-color 5-draws from a 10-ball urn is
(10
3
)
· 150 =

18000. Therefore, we can compute the likelihood:

𝐿(𝑛 = 10, 𝑘 = 5;𝑑 = 3) = |3-color 5-draws from 10-ball urn|
|5-draws from 10-ball urn|

=

(10
3
)
· 150

105
=

18000
105

=
9
50
.

The computation above assumes that the size of the urn is known
(𝑛 = 10). Section 4.6.2 will remove that assumption, and instead
maximize 𝐿(𝑛, 𝑘 ;𝑑) as a function of 𝑛.

B LIKELIHOOD FUNCTION - GENERAL CASE
We now derive the general expression for the likelihood function
𝐿(𝑛, 𝑘 ;𝑑). By definition,

𝐿(𝑛, 𝑘 ;𝑑) = Pr(𝑑 |𝑛, 𝑘) = |{𝑑-color 𝑘-draws from 𝑛-ball urn}|
|{𝑘-draws from 𝑛-ball urn}|

The denominator is simply 𝑛𝑘 . The numerator can be computed in
two steps:

(1) Choose 𝑑 out of the 𝑛 colors:
(𝑛
𝑑

)
possibilities.

(2) Generate all 𝑑-color 𝑘-draws using only the 𝑑 chosen colors.
The second step is related to a well-known combinatorial prob-
lem [19].8 Specifically, there is a close relationship between:

8See Richard Stanley’s Enumerative Combinatorics, Vol. 1, 2nd ed., Section 1.9 The
Twelvefold Way. One problem in the catalog of twelve involves counting surjective
functions 𝑓 : 𝑁 → 𝑋 for finite sets 𝑁 and 𝑋 . Stirling numbers of the second kind
arise from this problem.

12

770

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://doi.org/10.6028/nist.fips.140-2
https://doi.org/10.6028/nist.fips.140-2
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.1017/CBO9781139058520
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/svenda
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/svenda
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1038/s41592-019-0686-2
http://www-math.mit.edu/~rstan/ec/ec1.pdf

Detecting Weak Keys in Manufacturing Certificates: A Case Study ACSAC ’23, December 04–08, 2023, Austin, TX, USA

• The Stirling number of the second kind 𝑆 (𝑘,𝑑), i.e., the num-
ber of ways to partition a set of 𝑘 elements into 𝑑 non-empty
unlabeled subsets.

• The number of 𝑑-color 𝑘-draws that use a fixed set of 𝑑
colors.

We relate these two problems as follows. Consider each of the 𝑘
draws (indexed 1, 2, . . . , 𝑘) as an element, and each of the 𝑑 colors
as the label for a subset. If the𝑚-th draw is a ball of color 𝑖 , then
we assign element𝑚 to subset 𝑖 . A 𝑑-color 𝑘-draw corresponds to
a partition of 𝑘 elements into 𝑑 labeled subsets. The only difference
between this and the 𝑆 (𝑘, 𝑑) scenario is whether the subsets are la-
beled or unlabeled. Since all permutations of labels produce distinct
partitions, the difference is a factor of 𝑑!, so the number of 𝑑-color
𝑘-draws using only 𝑑 chosen colors is 𝑑! · 𝑆 (𝑘,𝑑). The expression
for 𝑑! · 𝑆 (𝑘, 𝑑) is:

𝑑! · 𝑆 (𝑘,𝑑) =
𝑑∑︁
𝑖=0

(−1)𝑖
(
𝑑

𝑖

)
(𝑑 − 𝑖)𝑘 .

In Appendix A, we arrived at an instance of this expression via
inclusion-exclusion. There also exist non-combinatorial proofs [19].
Combining all of the steps above, we can derive a general expression
for the likelihood function.

𝐿(𝑛, 𝑘 ;𝑑) = Pr(𝑑 |𝑛, 𝑘) = |{𝑑-color 𝑘-draws from 𝑛-ball urn}|
|{𝑘-draws from 𝑛-ball urn}|

=
1
𝑛𝑘

· |{𝑑-color 𝑘-draws from 𝑛-ball urn}|

=
1
𝑛𝑘

·
(
𝑛

𝑑

)
· (𝑑! · 𝑆 (𝑘, 𝑑))

=
1
𝑛𝑘

(
𝑛

𝑑

) 𝑑∑︁
𝑖=0

(−1)𝑖
(
𝑑

𝑖

)
(𝑑 − 𝑖)𝑘 .

13

771

	Abstract
	1 Introduction
	2 Contributions
	3 Related Work
	3.1 FIPS-140
	3.2 Pseudorandom Generator Cloning

	4 Methods
	4.1 Datasets
	4.2 Detection Methodology
	4.3 Batch GCD
	4.4 Common Key Test
	4.5 Exploitability
	4.6 Effective Entropy: Typical Set of Keys

	5 Results
	6 Discussion
	7 Limitations
	8 Efficient Population Testing
	9 Ethical Considerations
	10 Conclusion
	Acknowledgments
	References
	A Likelihood Function - Small Example
	B Likelihood Function - General Case

