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Abstract
Modern C/C++ applications are susceptible to Non-Control 
Data Attacks, where an adversary attempts to exploit mem-
ory corruption vulnerabilities for security breaches such 
as privilege escalation, control-flow manipulation, etc. One 
such popular class of non-control data attacks is Control-
flow Bending, where the attacker manipulates the program 
data to flip branch outcomes, and divert the program control 
flow into alternative paths to gain privileges. Unfortunately, 
despite tremendous advancements in software security, state-
of-art defense mechanisms such as Control-flow Integrity 
(CFI), are ineffective against control-flow bending attacks 
especially those involving flipping of branch predicates.
In this work, we propose a performance-aware defensive 

scheme, Pythia, which utilizes ARM’s pointer authentica-
tion (PA) hardware support for dynamic integrity checking 
of forward slices of vulnerable program variables that can be 
affected by input channels, and backward slices of branch 
variables (including pointers) that may be misused by the 
attacker. We first show t hat a  naive s cheme o f protecting 
all vulnerabilities can suffer from an average runtime over-
head of 47.88%. We then demonstrate how overheads can 
be minimized by selectively adding ARM PA-based canaries 
for statically-allocated program variables and creating se-
cure sections for dynamically-allocated variables to avoid 
overflows by input channels. Our experiments show that em-
ploying this hybrid approach results in an average overhead 
to 13.07%. We empirically show that Pythia offers better secu-
rity than state-of-the-art data flow integrity (DFI) technique, 
especially in pointer-intensive code and C++ applications 
with 92% branches secured on an average and 100 % secured 
in case of 3 applications.

CCS Concepts: • Software and its engineering → Com-
pilers; • Security and privacy → Software and applica-
tion security.
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1 Introduction
Real-world applications are vulnerable to various data at-
tacks, where an adversary with a malicious intent attempts
to exploit software memory corruption vulnerabilities. This
includes targeting instances of stack/string buffer overflow
[19, 41, 47, 78], integer overflow [9, 75, 76], heap corruption
[29, 59, 64] , use-after-free [45, 81], etc with the objective
of either gaining privileged access (privilege escalation), ex-
ecuting unwanted code segments (control flow manipula-
tion), read/write values from memory (information leakage)
or other ways to hinder intended process execution. These
vulnerabilities are predominantly featured in the Common
Weakness Enumeration (CVE) 2023 [1] list.

The attacks resulting from memory vulnerabilities can be
broadly classified into two groups - Control-Data Attacks
and Non-Control Data Attacks. Instances of control-data
attacks typically involve an adversary corrupting a program
code-pointer (function pointers, return statements, etc), to
‘hijack’ the control-flow of a program and divert it to a desig-
nated target. To defend against such control-flow hijacking
attacks, a common methodology is to monitor the targets of
indirect control-transfer instructions and restrict them to a
set of feasible targets. This forms the basis of Control-Flow
Integrity (CFI) mechanism and over the past two decades,
CFI and its variants have evolved significantly over time and
have been a focus of extensive research in security literature
[2, 11, 12, 20–23, 25, 33, 35, 37–39, 52, 58, 61, 73, 77, 80, 82, 84].
However, recent works have highlighted that the current
CFI mechanisms are often inadequate and can even create
additional security vulnerabilities [13, 18, 49].
On the other hand, Non-Control Data Attacks occur

when an adversary corrupts program data that does not di-
rectly manipulate program control such as function calls and
return addresses. A popular instance of non-control data
attacks is Control-flow Bending [13], where an attacker can
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‘change’ the control-flow of program in such a way that it
follows a valid path in the program control-flow graph (CFG).
Such attacks typically involve flipping the branch outcomes
to divert the branch target to a code region of interest (such
as privileged or sensitive code). Such attacks are credible
threats [13, 16, 32, 34], and are harder to defend against,
since CFI techniques are unable to distinguish the “correct”
program execution path if there are multiple feasible exe-
cution paths in the CFG. In other words, analyzing static
artifacts such as return addresses of functions or branch tar-
gets are not adequate to detect such attacks, which calls for
dynamic monitoring of the program data-flow. Such moni-
toring incurs significant runtime overheads especially since
program branches are very frequent (typically every 10𝑡ℎ
instruction is a branch). Prior works have proposed defense
mechanisms for non-control data attacks either by isolating
sensitive parts of the program [27, 43, 67, 70, 85], introducing
language extensions to enforce constraints [36, 54–56, 66],
or by monitoring ‘critical’ program variables [83].
Tainting branch variables through memory corruptions

and overflow leading to privilege escalation are the tradi-
tional ways of control-flow bending attacks. In this work,
we show that the problem and the range of attacks in this
category could be broader.
Pointer Misdirection & Exploiting Pointer Dualism

(§3): The first contribution of this work is to present a new
class of non-control data attacks that are based on data pointer
manipulation and exploiting pointer arithmetic. We show that
an adversary can successfully carry out control-flow bend-
ing attacks by either tainting variable(s) that contribute to
the computation of conditional branch predicates, or by ma-
nipulating data pointer to point towards branch predicate
variables. Such attacks cannot be satisfactorily defended by
employing static program analysis techniques such as Data-
flow Integrity (DFI) [14] because of the inability to deal with
pointer arithmetic and lack of field sensitive analysis.
To establish an effective defensive mechanism against

data attacks stemming from input channels, entire program
execution path from input channel to the branch must be ana-
lyzed and protected. This also allows early detection of these
attacks and paves the way for adopting necessary mitigat-
ing mechanisms. However, detecting the dynamic execution
path of an application is an extremely challenging problem,
because of frequent branch instructions and the presence
of pointers in the program. This also makes the program
path input-dependent, and it can change dynamically across
various execution instances. Performing pointer-based path
analysis at individual branch-level granularity can be quite
challenging limiting the extent of protection offered by the
technique. In this work, we show that relying on the protec-
tion of individual variables encountered along these paths
leveraging crypto-based integrity checks in hardware is a
more viable solution than developing data-flow integrity

checking mechanisms in software solving both problems of
precision and overheads.

Over the last few years, CPU vendors have started to add
new hardware extensions to enable cryptographic defense
mechanisms for pointers.ARMpointer authentication (PA) [5]
is one such mechanism, that allows verification of a pointer’s
integrity based on its address bits. One naive solution to
utilize the ARM-PA mechanism for preventing control-flow
bending attacks, would be to simply convert all variables
associated with conditional branches into pointers, and then
sign and authenticate them. However, our experiments show
that this leads to substantial overheads (47.88%), as every
variable requires to be encrypted when stored from memory,
and then authenticated before subsequent loads.
On the other hand, another diametrically opposite way

to tackle to most data attacks is simply to prevent an at-
tacker from mitigating any program variables that can lead
to any subversion of control-flow. This means that we need
to eliminate the notion of dispatcher functions or gadgets
[13], i.e functions that can overwrite their return address in
the presence of attacker-supplied arguments. Usually, such
functions involve program input channels, through which
attackers can manipulate program variables. The presence
of dispatcher gadgets enables an attacker to overwrite mem-
ory locations that comprise the branch predicate variables,
thereby flipping the branch outcome. Thus, to establish a se-
cure defensemechanism against control flow bending attacks
with low overheads, we propose Pythia, a compiler-guided de-
fense mechanism that is based on a hybrid model of ARM-PA
and the elimination of dispatcher functions.

CompleteDefense againstNon-ControlDataAttacks:
The second contribution of this paper is a conservative scheme
that protects against all known control-flow bending attacks.
This is achieved by first determining two categories of “vul-
nerable” program variables: a) forward-slices of input chan-
nels variables (input channel construction), that can be lever-
aged by an attacker to cause buffer overflows into branch
variables, and b) backward-slices of branch predicate vari-
ables (branch decomposition) that can be tainted with the
malicious intent to cause control-flow bending. Program vari-
ables from both these “vulnerable” categories are encrypted
with ARM-PA across the board to ensure complete defense
against control-flow bending attacks, the new class of pointer
misdirection, and pointer exploitation attacks. Additionally,
this scheme also performs alias analysis to handle pointer
variables in both categories.

Performance-AwareCompleteDefensive againstNon-
Control Data Attacks: The third contribution of this paper
is an end-to-end compiler framework for defending against
non-control data attacks with low overheads. Pythia improves
upon the conservative defense mechanism by selectively us-
ing ARM-PA to minimize the runtime overheads. To achieve
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this, Pythia further categories the vulnerable program vari-
ables into two sub-categories: a) Statically-Allocated Vari-
ables that reside in the program’s stack memory space, and
b) Dynamically-Allocated Variables that originate in the pro-
gram’s heap memory space. Pythia tackles the former by per-
forming a re-orientation of stack variables, and then adding
stack canaries with ARM-PA to detect any overflows, while
the latter is handled with heap sectioning, that transfers
dynamically-allocated vulnerable program variables into a
“secure” section of the heap. This reduces the number of
ARM-PA instructions by 4.25x, and brings down the runtime
overhead significantly.

Pythia has been tested on C/C++ benchmarks from SPEC
2017 Benchmark Suite [10], popular Real-world examples
[15], and in additional benchmarks such as Nginx [57]. We
show that Pythia can detect these possible control-flow bend-
ing attacks in these workloads and achieved an average run-
time overhead of only 13.07%, compared to 47.88% from CPA.
Compared to the conservative scheme, we also show that
Pythia reduces the number of ARM-PA instructions by a
factor of total number of branches present in the program.

2 Background and Motivation
2.1 Control-Flow Bending
Control-Flow Bending [13] is a generalization of non-control
data attack, where the attacker manipulates the program data
(non-code pointer) which results in diverting the control flow
into alternative paths in the program CFG. CFI is completely
ineffective against this as the "bended" target is always in
the set of feasible targets in the program CFG. Although
these attacks have been known to exist for a while, this
problem has remained untackled mostly and state-of-the-
art approaches such as (DFI) [14] leaves important practical
cases of pointer intensive code and C++ application bases
untackled prompting this work.

2.2 Motivating Examples: Non-Control Data Attacks
String-Buffer Overflow leading to Privilege Escalation:
A simple example for a non-control data attack [86] leading
to privilege escalation, in shown in Listing 1. In this example,
the user is verified by an input password, and the result is as-
signed to the variable “user”. The user-variable is frequently
checked to provide access to certain operations. However, in
between the checks, the function interacts with the user to
get some other inputs. Input pointer “someinput” can be ma-
nipulated by the user, causing a buffer overflow vulnerability
in line 13, and leading to superuser access. This attack is not
handled by any CFI mechanism, because technically both
the targets in lines 15 and 18 are feasible. This constitutes a
classic instance of control-flow bending where CFI is unable
to distinguish the ‘possible’ static target from the ‘actual’
dynamic target, where line 15 should only be a target when
the user has privileged access.

1 void Access(char pwd [20]) {

2 char str[SIZE], user[SIZE];

3 char *someinput;

4

5 verify_user(user , pwd);

6 if(strncmp(user ,"admin" ,5)){

7 // super user code

8 ...

9 }else{

10 // normal user code

11 ...

12 }

13 strcpy(str ,someinput);

14 if(strncmp(user ,"admin" ,5)){

15 // super user code

16 ...

17 }else{

18 // normal user code

19 ...

20 }

21 }

Listing 1. Simple example [86] of a Non-Control Data
Attack exploiting string buffer-overflow leading to Privilege
Escalation

ProFTPdAttack leading to Information Leakage: The
ProFTPd attack [34] is a Data-Oriented Programming (DOP)
based attack to eventually leak the private key by breaking
ASLR through the 𝑠𝑟𝑒𝑝𝑙𝑎𝑐𝑒 function in ProFTPd shown in
Code 2. The vulnerability in the function is because of a
faulty check at Line 24. The attacker first triggers this over-
flow check by constructing inputs through CWD (change
directory) semantics. When ‘cp’ points to the last charac-
ter of the buffer 𝑏𝑢𝑓 , that is (𝑐𝑝 − 𝑏𝑢𝑓 + 1) equals blen, the
check returns 𝑓 𝑎𝑙𝑠𝑒 and Line 27 overwrites string termina-
tor inside the buffer. During subsequent iterations of the
while loop, at Line 14, 𝑠𝑡𝑟𝑙𝑒𝑛(𝑝𝑏𝑢𝑓 ) > 𝑏𝑙𝑒𝑛 and invoking
sstrncpy overflows the buffer into the stack overwriting lo-
cal variables such as ‘rarr’ and ‘cp’. Since both the source
and destination in the string copy function 𝑠𝑠𝑡𝑟𝑛𝑐𝑝𝑦 at Line
14 are corrupted, the attacker controls the number of bytes
copied in the successive iterations of the while loop.
It can be seen that the root cause of the above attacks is

the ability to flow (taint) values into branch predicates or
position the respective pointers involved by manipulating
them. Data flow integrity techniques such as DFI fail in
the presence of pointers when it comes to field insensitive
analysis and do not deal with pointer arithmetic. This leads
us to propose defensive mechanisms that first identify these
vulnerabilities and defend against these attacks by selectively
leveraging ARM-PA.

1 char* sreplace(char*s, ...) {

2 ...

3 char *m, *r, *src = s, *cp;

4 char **mptr , **rptr;

5 char *marr [33], *rarr [33];
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6 char buf[BUF_MAX] = {'\0'}, *pbuf = NULL;

7 size_t mlen=0, rlen=0, blen; cp=buf;

8 ...

9 while (*src){

10 for(mptr=marr ,rptr=rarr;*mptr; mptr++,rptr ++) {

11 mlen = strlen (*mptr);

12 rlen = strlen (*rptr);

13 if(strncmp(src ,*mptr ,mlen) == 0){

14 sstrncpy(cp ,*rptr ,blen -strlen(pbuf));

15 if(((cp + rlen) - pbuf + 1) > blen){

16 cp = pbuf + blen - 1;

17 } /* Overflow Check*/

18 ...

19 src += mlen;

20 break;

21 }

22 }

23 if(!* mptr) {

24 if((cp - pbuf + 1) > blen){ // off -by-one

error

25 cp = pbuf + blen - 1;

26 } /* Overflow Check*/

27 *cp++ =*src++;

28 }

29 }

30 }

Listing 2. Example of ProFTPd Vulnerability leading to
Information Leakage

2.3 Background: ARM Pointer Authentication
The ARM Pointer Authentication (ARM-PA) [5] is a special-
ized hardware mechanism that ensures the integrity of data
and code pointers associated with the program. It was first
introduced in the ARMv8-A architecture. The intuition here
is that modern architectures allocate a larger number of bits
for defining the address space of pointers. However, not all
bits are required to define the address space. For instance, in
64-bit architectures, the address space of pointers does not
require more than 40-bits. Thus, these unused bits are uti-
lized to assign a Pointer Authentication Code (PAC). Based on
the PAC bits, it’s possible to determine if a pointer’s integrity
has been compromised or not. Recently, this mechanism has
gained popularity as memory safety mechanisms for both
control and non-control data attacks [31, 48, 51, 65].

2.4 Overview of Pythia
We now describe Pythia (Fig. 1) a compiler-guided defen-
sive framework that utilizes a performance-aware approach
to combat the problem of non-control data attacks, namely
control-flow bending. Pythia improves on a conservative de-
fensive mechanism that first analyzes all conditional branch
statements, and input channels present in the application.
The conditional branch variables are decomposed, and input
channel variables are mapped, into their constituent vari-
ables by taking their program back-slices and forward-slices

respectively. This allows us to capture the entire set of “vul-
nerable” program variables that can be tainted and result
in control-flow bending. For pointer-type variables, an alias
analysis is performed to determine all possible variables that
can be pointed-to by a specific pointer that has a potential
alias with these variables. The conservative scheme simply
encrypts all such variables with ARM-PA instruction, result-
ing in complete defense against control-flow bending attacks,
but with substantial runtime overheads.
On the other hand, Pythia follows a performance-aware

approach to reduce the runtime overheads incurred by the
conservative scheme. After the branch and input channel
decomposition, Pythia then further classifies the vulnera-
ble variables into statically-allocated (stack) variables and
dynamically-allocated (heap) variables. The rationale behind
such an approach is that statically allocated variables in stack
memory have a fixed address associated with them, and
their integrity can be checked by adding a canary to them,
which acts as an indicator for potential overflows. However,
this approach does not work satisfactorily for dynamically-
allocated program variables that reside in the heap memory,
because of limited control over the memory allocation at
the user level. To tackle such variables, Pythia sections the
heap memory into an isolated section where the vulnerable
program variables reside, and into a shared section where
other variables are allocated. To achieve this, Pythia uses
a custom implementation of malloc that is combined with
ARM-PA checks. This allows Pythia to selectively use ARM-
PA, instead of applying it across the board and allows it to
minimize the runtime overheads significantly.

2.5 Threat Model & Attacker Goals
In this paper, we assume that the attacker can corrupt any
program variable, at any point in time, with unlimited at-
tempts. This essentially means that a control-flow bending
attack can occur at any point during program execution.
In our threat model, we assume that either an attacker can
directly corrupt the value that participates in the branch
predicate or can corrupt a value that comprises a backward
slice of a branch ie, a value that participates in the computa-
tion of branch predicate value through an input channel. A
third mechanism is also available to the attacker to position
a pointer to point to the branch variable so that the attacker
can load a malicious value into the branch variable using the
alias of the pointer (ie, by leveraging the l-value of pointer
dereference encountered before the branch). Thus, the objec-
tive of Pythia is to detect such attacks as early as possible,
since corrupt program variables can lead to erroneous pro-
gram states as a cascading effect.
The goal of the attacker is to divert the application’s

control-flow into alternate execution paths, either to ob-
tain privileged access, leak information or hinder program
execution in any manner. For the purposes of this paper,
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Figure 1. Pythia: Compiler-Guided Defense Framework against Control-Flow Bending Attacks. The vulnerable program variables
are segregated based on whether they are statically allocated (stack) or dynamically allocated (heap) in the program memory layout, and
Pythia leverages ARM PA for constructing canaries for stack-allocated variables, and for isolating the heap.

we consider any diversion in control-flow as a ‘successful
attack’.

2.6 Basic Terminologies
Definition 2.1 (Input Channel (IC)). The input channel
is any function that is vulnerable to memory corruption.
Attackers manipulate these functions to modify the variables
of the program’s memory.

In this paper, we consider six different categories of input
channel functions: print, scan (Reads strings specifically in
a format - scanf ),move/copy, get (e.g. fgets), put (e.g. strcpy,
memmove, memcpy) andmap (maps files or devices to the
virtual address space - mmap)

Definition 2.2 (Def-Use (DU) Chains). Use-Def Chains is a
widely used data-flow graph that links a variable definition
with its corresponding definition.

Definition 2.3 (Upwards-Exposed Use). A program variable
v has an upwards-exposed use at a program point p, if there
exists only one path from its definition to p.

To quantify the early detection capabilities of a security
scheme, we define attack distance:

Definition 2.4 (Attack Distance). Attack distance represents
the number of static program instructions between the begin-
ning of a backward slice where the protection starts and the
branch predicate.

The attack distance shows how high the protection must
start to secure the input channel in terms of the number of
instructions. Intuitively, if a technique’s attack distance is
not greater than or equal to the attacker’s attack distance
(which is the input channel), it will not be able to protect
the branch. In such cases, an attacker can taint the branch
predicate’s backward slice through the unprotected values
in the program without being detected by the protection
scheme, leading to successful attacks. Due to these reasons,
an input channel based attack can be detected only if the
defensive mechanism has a large enough attack distance that
is higher than the input channel.

3 Pointer-Based Control-Flow Bending
Attacks

In this section, we describe a class of attack that involve ma-
nipulation of program pointers and use of pointer arithmetic
to achieve control flow bending.

3.1 Exploiting Pointers and Array Dualism
Often, programmers write optimized code that exploits the
dualism between program pointers and array pointers. Con-
sider the code snipped presented in Listing 3. In this case,
an input channel variable 𝑘 (line 3) is used to increment the
base address of array 𝐴𝑟𝑟 (line 4) through 𝑙 . In the normal,
non-malicious execution of the code (when p is not aliased
to m), the privileged code is bypassed. In this code snippet,
however, an attacker can input a malicious value of 𝑘 over-
flowing into 𝑙 , which can set the pointer 𝑝 point to 𝑚. In
such an event, the attacker can make a pointer 𝑝 point to
m, setting a new value of m to 𝑛 + 1, bending the predicate
𝑚 > 𝑛, and gaining privileged access.

In summary, these attacks arise from two possible vulnera-
bilities: 1) Input channel variables gaining access to program
pointers, that can potentially point across the entire range
of variables, 2) Variables participating in branch predicates
can be tainted to flip the branch outcomes.

1 int *p, Arr[100], l, k;
2 int m, n;
3 p = Arr; //p stores the base address of Arr
4 scanf("%d", &k);
5 p = p + l; // l represents the stride for an

element
6 ...
7 m = n-1;
8 *p = n+1; // p aliased to m by setting right value

of k and this alias sets m = n+1
9 if (m > n) {
10 // privilaged execution
11 }

Listing 3. Simple example of an adversary exploiting the
dualism between array pointers and program pointers
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4 Pythia: Design and Implementation
This section describes the Pythia Compiler Framework, which
incorporates lightweight defense mechanism against control-
flow bending attacks. We first describe a conservative de-
fensive mechanism that can thwart all known instances of
control-flow bending attacks (§4.1 - 4.2), which serves as
a baseline. We then illustrate the performance-aware de-
fensive approach taken by Pythia (§4.3), which minimizes
ARM-PA checks over the conservative baseline. An upper-
bound probability estimate for brute force attacks targeting
stack canaries, and a qualitative analysis of their security
strengths is discussed in §4.4.

The core insight that is leveraged by Pythia is that control-
flow bending attacks can be triggered by only a finite sub-
set of program variables. These variables are either branch
predicate variables, variables with input channels, or program
pointers. In this paper, we call the collective set of these vari-
ables as vulnerable variables. The goal here is to isolate
such variables so that their integrity can be authenticated
with ARM-PA.

4.1 Branch Decomposition & Input Channel
Construction

The program path taken by an application during its execu-
tion can vary in the presence of branch statements. Specifi-
cally, the dynamic program control flow is contingent upon
the individual program variables that constitute the branch
predicate. However, the program control flow can also be sub-
verted by manipulating other program variables that entail
a direct/in-direct definition of branch variables. Therefore,
we need to consider all such possible program variables that
can be exploited to flip the outcome of a conditional branch
and subvert the program’s control-flow.
A naive approach to solve this problem would be to sim-

ply authenticate and secure all possible program variables.
However, adopting such an approach will entail frequent
authentication across every variable and their uses, and will
incur significant overheads. Thus, to minimize runtime over-
heads, we first need to determine the set of vulnerable pro-
gram variables, which can act as a source of control-flow
bending attacks. We start by defining the notion of branch
sub-variables:

Definition 4.1 (Branch Sub-Variable). A program variable 𝑣 ,
is a branch sub-variable for a conditional branch 𝑏, if it’s either
a branch predicate variable of 𝑏, or if it contains an upwards-
exposed use of at least one of branch predicate variables of 𝑏.
In a nutshell, the set of branch sub-variables of a branch

predicate statement represents every possible program vari-
able that can affect the outcome of the given branch. For the
computation of the branch sub-variable set, we leverage
the backward program slices of branch predicate variables.
The backward program slice of a variable is obtained by
traversing its Use-Def (UD) Chain (2.2) against the direction

of control flow. The intuition here is that each branch vari-
able essentially is an upwards-exposed use of other program
variable(s) above the branch predicate in the program [53].
This backwards traversal is performed transitively from the
branch prediction to the start of its function. This process is
illustrated with a simple example in Fig 2.
Algorithm 1: Branch Decomposition Algorithm
1 Input: Conditional Branch Instruction 𝐵𝑟𝐼𝑛𝑠𝑡

Result: Branch sub-variable set 𝐵𝑠𝑢𝑏 (𝐵𝑟𝐼𝑛𝑠𝑡 )
2 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡, 𝐵𝑠𝑢𝑏 ← 𝜙

3 𝑝𝑎𝑟𝑒𝑛𝑡_𝑓 𝑢𝑛𝑐𝑡 ← 𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐵𝑟𝐼𝑛𝑠𝑡 )
4 𝐵𝑣𝑎𝑟𝑠 ← 𝐵𝑟𝐼𝑛𝑠𝑡 .𝑔𝑒𝑡𝑉𝑎𝑟𝑠 ( )
5 for each variable 𝑏𝑣𝑎𝑟 ∈ 𝐵𝑣𝑎𝑟𝑠 do
6 𝑑𝑒𝑓 _𝑠𝑒𝑡 ← 𝑔𝑒𝑡𝑎𝑙𝑙𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 (𝑏𝑣𝑎𝑟 )
7 for each definition 𝑑𝑒𝑓 ∈ 𝑑𝑒𝑓 _𝑠𝑒𝑡 do
8 worklist.push_back(def)
9 end

10 end
11 while worklist is not empty do
12 𝑑 ← remove a definition from the worklist
13 for each operand 𝑜𝑝 ∈ 𝑑 do
14 if 𝑜𝑝 ∈ 𝐵𝑡 then
15 𝐵𝑠𝑢𝑏 .push_back(op)
16 else
17 𝑑𝑒𝑓 _𝑠𝑒𝑡 ← 𝑔𝑒𝑡𝐴𝑙𝑙𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 (𝑜𝑝 )
18 for each definition 𝑑𝑒𝑓 ∈ 𝑑𝑒𝑓 _𝑠𝑒𝑡 do
19 worklist.push_back(def)
20 end
21 end
22 end
23 end

The process of branch sub-variable computation has been
summarized as branch decomposition algorithm (Algorithm 1).
It follows a worklist-based approach that iteratively captures
sub-variables emanating from branch variables by traversing
their def-use chain in a backwards (against the control-flow)
direction. The worklist keeps track of all definitions remain-
ing to be decomposed at a particular time-step. The branch
decomposition algorithm deals with pointer variables by
loading the value stored at the address pointed, after per-
forming null pointer checks. The alias of all the pointers
present in the function and their backward slices are also
analyzed by this algorithm.

On the other hand, in order to refine the set of vulnerable
program variables that can lead to control-flow bending at-
tacks, we can analyze program variables that are a part of
user input channels. Similar to branch decomposition, the
set of variables that involve input channel, can be computed
using their forward-slices. A forward program slice is ob-
tained by traversing the use-def chains of variables along
the direction of dataflow. This is the exact reverse of the
branch decomposition algorithm, as here we find the sub-
variables by walking the use-def chain in a forward manner,
analyzing any definition that uses the input channel vari-
ables. This process is illustrated in Fig 2. The input channel

855



Pythia: Compiler-Guided Defense Against Non-Control Data Attacks ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 2. Simple illustration of computing vulnerable pro-
gram variables by branch decomposition & input channel
construction.
construction algorithm also follows the same structure as the
branch decomposition worklist algorithm. The intersection
of the sub-variables sets obtained from branch decomposition
and input-channel construction, constitutes the refined set of
vulnerable program variables.

Once the set of vulnerable program variables is computed
and refined, the next step is to secure them to prevent control-
flow bending attacks. We will now discuss various defensive
mechanisms that can be used to secure these variables.

4.2 Conservative Approach: Complete Pointer
Authentication using ARM-PA

In this defensive approach, all vulnerable program variables
are simply encrypted using ARM-PA mechanism (without
any refinement), and then decrypted at every subsequent
load, to authenticate their integrity. ARM-PA leverages the
unused address bits in program pointers to maintain vari-
able integrity. Therefore, in order to successfully apply this
scheme to vulnerable variables, data pointers are created
for each non-pointer vulnerable variable. Each created data
pointer is encrypted at its definition, and when it’s stored to
the memory, its integrity is checked before every use. In case
an attacker has attempted to taint any variable, it will be
detected before it is loaded from the memory. This scheme of
encrypting every vulnerable program variable results in the
inclusion of at least two ARM-PA instructions. In addition,
this scheme also finds out the may-aliases of pointers and
ensures that they adhere to the ARM-PA encryption and
decryption scheme for accessing.

For a single vulnerable variable 𝑖 with 𝑢𝑖 number of uses,
this conservative scheme would introduce one additional in-
struction for encrypting during store (each variable can be
defined only once in SSA IR form) plus the𝑢𝑖 number of addi-
tional decrypting instructions for each use. This leads to 1+𝑢𝑖
number of additional program instructions, for vulnerable
program variable 𝑖 . Therefore, in a program with 𝐵 condi-
tional branches and 𝑣 vulnerable variables, each with 𝑢 uses

Algorithm 2: Complete Pointer Authentication
(CPA) Algorithm
1 Input: Set of all conditional branches 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 present in

program
Result: Encrypt and Authenticate the set of vulnerable variables

associated with Conditional Branches using ARM-PA
2 for each branch instruction 𝑏𝑟 ∈ 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
3 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠 ← 𝑏𝑟𝑎𝑛𝑐ℎ𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏𝑟 )
4 for each definition 𝑑𝑒𝑓 ∈ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠 do
5 ARM_PA.encrypt(def)
6 for each load 𝐿𝑣 ∈ 𝑑𝑒𝑓 do
7 ARM_PA.authenticate(𝐿𝑣 )
8 end
9 for each store 𝑆𝑣 ∈ 𝑑𝑒𝑓 do
10 ARM_PA.encrypt(𝑆𝑣 )
11 end
12 end
13 end

(on average), the maximum number of extra instructions that
are instrumented in the program is given by:

Avg ARM-PA instructions = 𝐵 𝑣 (2 𝑢 + 1) (1)

An algorithm depicting the complete pointer authentica-
tion scheme is presented in Algo. 2. The scheme takes in all
vulnerable variables associated with conditional branches
and input-channels present in the program. It first computes
the set of vulnerable program variables by branch decom-
position (line 3). It then creates a pointer reference for each
one of them. In addition, it also performs alias analysis for
these pointers. It then adds ARM-PA encryption on the store
instruction, and then ARM-PA authentication (decryption)
for each subsequent use.

4.3 Performance-Aware Approach: Stack Canaries &
Heap Sectioning

Pythia further refines the set of vulnerable variables by first
segregating statically and dynamically allocated program
variables. For statically-allocated program variables that re-
side in the program’s stack memory, Pythia relocates them
on the bottom of the stack memory to isolate and capture the
effect of buffer overflows effectively. For dynamically allo-
cated variables, Pythia divides the program’s heap memory
into two sections (isolated and shared), and vulnerable vari-
ables are relocated to the isolated section to prevent buffer
overflow attacks.
★ Securing Statically Allocated Variables: Pythia first

detects all the branch sub-variables that are allocated in the
program’s stack memory, within a function. It then performs
input channel construction on such variables to determine
the interaction between the variable uses and input chan-
nels. A stack-allocated variable is marked as vulnerable if
any of its (direct/indirect) uses is passed on as arguments
to input channels. Pythia re-arranges the stack memory lay-
out to allocate the vulnerable variable to the stack bottom
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(lower address). In the event of any overflow triggered by
an adversary, the stack memory space of non-vulnerable
variables will not be affected since the stack memory usually
grows only in one direction, i.e towards the higher address.
Any possible try of writing at the beginning of a stack array
would cause a bus error so it can only write towards the end
of the array (the higher address).
Algorithm 3: Stack Re-layout & Canary Algorithm
1 Input: Set of all conditional branches 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 present in

program
Result: Perform stack re-layout & encrypt vulnerable variables

with canaries
2 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠𝑠 ← ∅
3 for each branch instruction 𝑏𝑟 ∈ 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
4 𝑏𝑎𝑐𝑘𝑠𝑙𝑖𝑐𝑒𝑑_𝑣𝑎𝑟𝑠𝑠 ← 𝑏𝑟𝑎𝑛𝑐ℎ𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏𝑟 )
5 for each branch variable 𝑏𝑣 ∈ 𝑏𝑎𝑐𝑘𝑠𝑙𝑖𝑐𝑒𝑑_𝑣𝑎𝑟𝑠 do
6 if 𝑏𝑣 ← 𝑖𝑠𝑆𝑡𝑎𝑡𝑖𝑐𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ( ) then
7 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠𝑠 ←

𝐼𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝑏𝑣 )
8 end
9 end

10 end
11 for each vulnerable stack variable 𝑠𝑣 ∈ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠𝑠 do
12 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑦𝑜𝑢𝑡 (𝑠𝑣 )
13 𝑐𝑎𝑛𝑠𝑣 ← 𝑎𝑑𝑑𝐶𝑎𝑛𝑎𝑟𝑦 (𝑠𝑣 )
14 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑦𝑜𝑢𝑡 (𝑐𝑎)
15 𝐴𝑅𝑀_𝑃𝐴.𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑐𝑎)
16 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑢𝑠𝑒𝑠 ← 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝑠𝑒𝑠 (𝑠𝑣 )
17 for each dispatcher use 𝑑𝑢 ∈ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑢𝑠𝑒𝑠 do
18 𝐴𝑅𝑀_𝑃𝐴.𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐𝑎)
19 𝑑𝑒_𝑟𝑒 𝑓 ← ∗𝑐𝑎
20 𝐴𝑅𝑀_𝑃𝐴.𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑐𝑎)
21 end
22 end

However, despite the stack layout re-orientation, over-
flows from vulnerable stack variables can still spill into one
another and lead to control-flow bending. To solve this prob-
lem, Pythia adds canaries with random values between each
vulnerable stack variable. Pythia inserts integrity checks in
the stack canaries, which serve as an indicator of buffer over-
flow in a vulnerable stack variable. The initialization of the
stack canary value is chosen at random, to prevent an adver-
sary from reverse-engineering the mechanism by analyzing
the program binary. To minimize runtime overheads, Pythia
uses hardware ARM-PA since it directly utilizes the memory
location’s address bits for encryption & decryption. In case
of a memory violation, the ARM-PA decryption mechanism
triggers a program crash.

An algorithm depicting the stack re-layout and the canary
encryption is presented in Algorithm 3. This scheme ensures
that no vulnerable program variable can overwrite any other
program variable, which prevents control-flow bending at-
tacks resulting from tainting statically-allocated program
variables through malicious inputs.

Similar to statically allocated program variables, control-
flow bending attacks can also originate from dynamically

allocated program variables. Although it’s straightforward
to detect vulnerable heap-allocated variables that interact
with input channels, performing heap re-layout is extremely
challenging since it involves performing non-trivial changes
in the system’s default memory allocation algorithm. The
goal here is to develop a simple light-weighted scheme that
doesn’t involve adding canaries across the entire structure
of heap memory, which will cause significant overheads, and
defeat the purpose of dynamic memory allocation.
★ Securing Dynamically Allocated Variables: In order

to protect dynamically allocated program variables, Pythia
splits the program heap into an isolated section and shared
section. The vulnerable program variables are allocated to
the secure portion of the heap, and the other variables are on
the shared portion of the heap. Pythia accomplishes heap sec-
tioning by creating two variations of the memory allocation
algorithm: one for isolated allocation and shared allocation.
These algorithms handle memory allocations for specific
address ranges. Pythia first detects the dynamically allocated
vulnerable program variables that interact with input chan-
nels. It then replaces their heap memory allocation for them
to be mapped in the isolated heap. Pythia’s custom memory
allocation is based on glibc’s malloc implementation, and
both libraries are linked at the compile time.
Algorithm 4: Heap Sectioning
1 Input: Set of all conditional branches 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 present in

program
Result: Perform Heap-Sectioning & encrypt dynamic vulnerable

variables
2 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠ℎ ← ∅
3 for each branch instruction 𝑏𝑟 ∈ 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
4 𝑏𝑎𝑐𝑘𝑠𝑙𝑖𝑐𝑒𝑑_𝑣𝑎𝑟𝑠ℎ ← 𝑏𝑟𝑎𝑛𝑐ℎ𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏𝑟 )
5 for each branch variable 𝑏𝑣 ∈ 𝑏𝑎𝑐𝑘𝑠𝑙𝑖𝑐𝑒𝑑_𝑣𝑎𝑟𝑠 do
6 if 𝑏𝑣 ← 𝑖𝑠𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙𝑙𝑦𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ( ) then
7 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠ℎ ←

𝐼𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝑏𝑣 )
8 end
9 end

10 end
11 𝑠𝑎𝑓 𝑒𝐴𝑑𝑑𝑟 ← 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝐻𝑒𝑎𝑝𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔 ( )
12 for each vulnerable heap variable ℎ𝑣 ∈ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒_𝑣𝑎𝑟𝑠ℎ do
13 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 (ℎ𝑣, 𝑠𝑎𝑓 𝑒𝐴𝑑𝑑𝑟 )
14 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑢𝑠𝑒𝑠 ← 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝑠𝑒𝑠 (ℎ𝑣 )
15 for each dispatcher use 𝑑𝑢 ∈ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑢𝑠𝑒𝑠 do
16 𝐴𝑅𝑀_𝑃𝐴.𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑑𝑢 )
17 𝑑𝑒_𝑟𝑒 𝑓 ← ∗𝑑𝑢
18 ...
19 ∗𝑑𝑢 ← 𝑑𝑒_𝑟𝑒 𝑓
20 𝐴𝑅𝑀_𝑃𝐴.𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑑𝑢 )
21 end
22 end

After sectioning the program heap memory into isolated
and shared regions, Pythia uses ARM-PA to encrypt the vul-
nerable variable and its uses. The scheme of securing dynam-
ically allocated variables has been summarized in Algorithm
4. It follows a similar flow as the stack layout algorithm (3)
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Figure 3. Illustration of Pythia’s defensive mechanism on a simple program. The statically vulnerable allocated variables 𝑎, 𝑏, 𝑑
are relocated to the bottom of stack memory, and equipped with ARM-PA encrypted canaries. The dynamically allocated
vulnerable variable 𝑝 is moved to the isolated section of heap memory, where it is encrypted.

of performing branch decomposition, and then input chan-
nel construction, only for dynamically allocated program
variables (lines 2-10). The heap sectioning procedure marks
specific memory address regions in the heap memory as
isolated (line 11), vulnerable variables are allocated in those
‘safe’ addresses (line 13). The portion of heap memory dis-
tributed between isolated and shared regions can be adjusted
based on the number of secure heap variables. Finally, ARM-
PA is leveraged to encrypt these variables (line 14), and all
of their uses (lines 15-18).

4.4 Analyzing Pythia’s Security Strengths &
Overheads

★ Instruction Overhead: In contrast to the conservative
scheme (§4.2), the performance-aware scheme of Pythia re-
duces the total number of ARM-PA instructions that are
instrumented in the program. For both statically allocated
program variable 𝑠𝑣𝑖 and dynamically allocated program
variable 𝑑𝑣𝑖 , this scheme adds one encryption and one de-
cryption for every use 𝑑𝑢𝑖 with input channel. If a program
has 𝑠𝑣 statically allocated variables and ℎ𝑣 dynamically al-
located variables, with 𝑑𝑢 number of uses (on average), an
upper-bound of additional ARM-PA instructions (𝐼 ) can be
obtained as:

𝐼 ≤ 𝐵 [𝑠𝑣 (1 + 3 𝑑𝑢) + ℎ𝑣 (1 + 2 𝑑𝑢)] (2)
𝐼 ≤ 𝐵 [𝑠𝑣 (1 + 2 𝑑𝑢) + 𝑠𝑣 𝑑𝑢 + ℎ𝑣 (1 + 2 𝑑𝑢)] (3)

≤ 𝐵 [(1 + 2 𝑑𝑢) 𝑣 ′ + 𝑠𝑣 𝑑𝑢] (4)
≈ 𝐵 (1 + 2 𝑑𝑢) 𝑣 ′ << 𝐵 (1 + 2 𝑢) 𝑣 (5)

In Eq. 5, 𝑣 ′ represents the sum of vulnerable statically and
allocated variables. Comparing this with the conservative
scheme (Eq. 1), we find that the number of refined variables is
much lesser than the actual vulnerable variables, i.e 𝑣 ′ << 𝑣 .
Thus, in practice the upper bound in Eq. 5 leads to a much
smaller value than in Eq. 1, despite the extra 𝑠𝑣 × 𝑑𝑢 term.

★ Tackling Interprocedural Overflows: A special case
of control-flow bending can occur during function calls.
When a function (caller) calls another function (callee) within
its body, it might be possible for the callee function to trig-
ger a buffer overflow which might spill into caller’s stack
canaries. This typically happens when the callee function’s
arguments are passed by reference (or pointers). For stati-
cally allocated variables passed by references (or pointers),
Pythia performs alias analysis to check if they may point
to any of the vulnerable variables, and stores their value in
a global pointer canary (authenticated with ARM-PA). For
dynamically allocated variables passed by pointers, Pythia
checks if such variables are aliased with interprocedural heap
allocation functions (e.g. malloc) and just uses the pointers
passed. If we get a case such that the variable passed is a
statically allocated variable along one call chain and a dynam-
ically allocated variable, we pass the dynamically allocated
variable as the argument and in the global pointer for canary
because we would have authenticated it with ARM-PA along
the statically allocated variable call chain. Therefore, with
the use of global pointers to canaries, Pythia can detect buffer
overflows that span across different function calls.
★Handling Brute-Force/Canary Attacks: Encryption

and authentication-based security mechanisms such as ARM-
PA can often be susceptible to brute-force attacks where an
attacker repeatedly runs the application to guess the canary
values (pointer authentication code) correctly. Pythia ensures
that the canary values are re-randomized on every entry to
the function. A wrong guess will crash the program which
will force the attacker to guess the canary value across differ-
ent executions of the application. This makes each program
invocation independent of the previous attempt. Therefore,
the probability of an adversary guessing the canary value of
a Linux system with 24-bit PAC correctly within 𝑁 repeated
attempts for a program with 𝑘 canary:
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P(Brute Forcing) = 𝑘

(
1 − 1

224

)𝑁−1 1
224 ≈

𝑘

224 (6)

Eq. 6 shows that there is 1 in 16 million chance that a brute-
force attack can successfully guess the authentication value for
one canary. In addition, the brute force can be modeled as a
geometric random variable. As a result, the expected number
of tries (𝐸 [𝑋 ]) is 1/𝑝 where 𝑝 = 1

224 meaning it will take 16
million tries before the attacker can figure out a canary. For
k canaries, it just needs to divide these chances over those k
canaries.

In addition, we re-randomize whenever the canary’s neigh-
bor stack variable will be used by an input channel. As a
result, any value extracted through a buffered read would
be useless since the canary’s value had changed already.
One important point to note here is that because of this re-
randomization, the “window” in which an attacker can break
a canary exists only during the specific function invocation,
between the start of the function’s execution and the load
instruction protected by the canary.

5 Implementation
Pythiawas implemented as a unified set of compiler passes in
LLVM 14. The Pythia code is split between the LLVMmodule
passes, LLVM machine code passes, the random library, and
the secure memory allocation library. The codebase is around
∼3420 LOCs including some edits to LLVM original files
to include our passes and intrinsics. The secure memory
allocation is based on glibc malloc implementation.

Module Pass: The algorithms presented in the paper are
implemented as LLVM Module Pass. LLVM’s mem2reg pass
transforms the program IR by promoting memory references
into register references, thereby reducing the loads/stores.
We created intrinsic functions for ARM-PA encryption for
the remaining loads, stores, and alloca instructions, along
with metadata for the backend machine pass.

AliasAnalysis: Pythia uses LLVM’s in-built alias analyses
(basic-aa, globals-aa, aa, and tbaa) for handling pointers in
backward and forward program slices.
Machine Pass: To handle register spills at the machine

code generation level, we leverage the instrumented meta-
data and intrinsics to detect additional encryption & authen-
tication points. In addition, we use the same data to add
canaries that were missed or need to be moved. The canaries
are populated with C++ random number generator with a li-
brary call at each invocation of the function, and right before
the input channel for stack variables.

6 Evaluation
The evaluation of Pythia answers the following set of ques-
tions about program security and performance overheads:

• How effective is the conservative scheme in defend-
ing against non-control data attacks, and what are its
runtime overheads?
• How do ARM-PA instructions and heap sectioning
instructions affect the performance of benchmarks?
• How secure is Pythia’s performance-aware approach
involving stack canaries and heap sectioning approach
against non-control data attacks? Does it manage to re-
duce the runtime overheads and ARM-PA instructions
compared to the conservative scheme?
• How does Pythia compare to DFI in terms of secur-
ing vulnerable branches in applications that can be
manipulated through the input channels?
• Can Pythia be effectively used to detect the control-
flow bending attacks with low overheads in real-world
examples?

Experimental Setup: The experiments were conducted
on an Apple MacBook M1 Pro, running Linux Ubuntu 22.04.
The system has 10-cores CPU (8 performance cores at 3.2
GHZ and 2 efficiency cores at 2.06 GHZ) with 16-core GPU
and 16-core neural engine and 24 MB L3 cache. Our exper-
iments were ran without frequency scaling or any manual
core-scheduling.

BenchmarkPrograms: Our experimentswere performed
on programs from SPEC 2017 Benchmarks [10] on ref inputs,
Nginx [57] and also on representations of real-world exam-
ples that have control flow bending vulnerabilities shown in
§2.2.
Performance Baselines: We evaluate Pythia’s perfor-

mance comparison with two different baselines:
• Vanilla Execution: Application is compiled with O3-
flag without adding any new instruction.
• Complete Pointer Authentication (CPA): Conser-
vative defensive scheme described in §4.2, where all
the (un-refined) vulnerable variables are simply en-
crypted with ARM-PA.

6.1 Performance Evaluation
The performance results are normalized against the vanilla
execution baseline, where no security mechanism is utilized.
★Complete PointerAuthentication (CPA): CPA scheme

encrypts the un-refined set of vulnerable program variables.
As illustrated in Fig. 6(a), the vulnerable variables set in CPA
consist of about 29% of all program variables on average.
These variables are encrypted at least once (initial store),
and decrypted at least once (all live program variables have
at least one use). Overall, since the set of un-refined variables
is constituted by a significant number of program variables,
the total number of ARM-PA instructions that are added to
the program is significant. Furthermore, any spills due to reg-
ister allocation will lead to even more ARM-PA instructions
instrumented in the program (Fig.6(b)). After the addition of
PA instructions, CPA incurs an average overhead of 47.88%
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Figure 4. (a) Runtime overhead comparison between CPA and Pythia. (b) Binary size comparison between CPA and Pythia.
The baseline absolute numbers for spec in secs and nginx in GB/s are shown on top.

with a worst-case of 69.8% as seen in Fig. 4(a). The worst
case is 502.𝑔𝑐𝑐_𝑟 which has the most number of vulnera-
ble variables resulting in a maximum number of ARM-PA
instructions added.
The extra ARM-PA instructions also adversely affect the

IPC count, and application binary sizes (Fig. 4-5). However,
the IPC does not suffer radically since ARM-PA directly lever-
ages hardware support in variable authentication. As shown
in Fig. 5(a), the average IPC degradation for CPA scheme
is around 4.9%, with the worst IPC degradation of 13% in
523.𝑥𝑎𝑙𝑎𝑛𝑐𝑏𝑚𝑘_𝑟 . This is caused by repeated execution of
ARM-PA instructions inside loop nests. Similarly, the ad-
dition of ARM-PA instructions causes application binaries
to bloat. As shown in Fig. 4(b), the average binary size in-
creased by 21.56%, with the maximum of 33.2% in 𝑛𝑔𝑖𝑛𝑥 .
Furthermore, increased instructions in the program lead to
additional LLC misses.
★ Pythia: In contrast to CPA, Pythia refines the set of vul-

nerable variables by performing input channel construction
on them. As a result, Pythia reduces the number of vulnerable
program variables by about 4.5x (Fig.6(a)). Another major
justification for refining the set of vulnerable program vari-
ables is the observation that ∼74% of conditional branches
in all benchmarks are not affected by input channels at all.
Instead, only 1.26% directly affected conditional branches
and 25.1% indirectly affected conditional branches can re-
sult in control-flow bending. Overall, only 5.1% of program
benchmarks are marked as vulnerable.
Aside from vulnerable variable refinement, the stack re-

layout and heap sectioning in Pythia also decreases the over-
all amount of ARM PA instructions. However, stack canaries
add new stack define instructions (mov), call random number
generator library function, and load/store instructions for
encryption/decrypted, which adds up to the overhead. The
library call for heap sectioning adds an extra overhead of
about 23 ns on average.
Thus, these factors combine to minimize the program’s

runtime overheadwhen securedwith Pythia. As shown in Fig.

4, Pythia’s performance overhead dropped to an average of
13.07% with the most noticeable change in 500.𝑝𝑒𝑟𝑙𝑏𝑒𝑛𝑐ℎ_𝑟
from 60.7% (CPA) to 18%. Maximum overhead in the Pythia
scheme was 25.4% (502.𝑔𝑐𝑐_𝑟 ). Pythia’s program IPC degra-
dation (Fig. 5) decreased by 2.8% on average - which bears
testimony to the fact that adding ARM-PA selectively in-
creases the opportunities of out-of-order processing, where
more instructions can be completed in the same cycle. Note
that heap sectioning makes the heap memory more frag-
mented. In case heap variables from isolated and shared sec-
tions are accessed consecutively, cachemisses might increase
due to non-local accesses. This is why certain benchmarks
(510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 ) have slightly more cachemisses in Pythia over
the baseline. Another implication of instrumenting less ARM-
PA instructions is that the application binary size decreased
to 10.37%, with 510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 having the highest binary bloat
with 17.99%.

6.2 Security Mechanism Evaluation
★ Input Channel (IC): Our experiments found 25326 in-
put channels functions across the 16 benchmarks, whose
distribution is presented in Fig. 5(b). As seen in the figure,
the most common input channel functions across the bench-
mark are print (31.5%) and move/copy (65.9%). The rest (map,
scan, get, put) account for only 2.6% of the input channels.
These input channels are either predefined library functions
(such as printf), or custom user-implemented versions. Our
experiments have revealed that such input channel functions
often get translated as intrinsics in the LLVM IR, especially
in C++ benchmarks, making detecting their presence easier.
Benchmarks (such as 510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 , 502.𝑔𝑐𝑐_𝑟 ) contain the
maximum input channels.
★ Pointer Authentication : The CPA baseline instru-

mented a total of 5×105 PA instructions across all the bench-
marks. Specifically, 502.𝑔𝑐𝑐_𝑟 and 510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 have themax-
imum number of PA instructions (1.3 × 105 each). As seen in
Fig. 6 (b), Pythia dramatically decreased total PA instructions
to 1.1 × 104 with 510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 having the most with 59, 680
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Figure 5. (a) IPC degradation comparison between CPA and Pythia. (b) Distribution of printf ICs and copy/move ICs based on
the total ICs in the benchmark.

Figure 6. (a) Distribution of vulnerable variables and ARM-PA instructions between CPA and Pythia scheme. (b) ARM PA
instructions decrease in Pythia over CPA.

instructions. Practically, in both the schemes only 50% of
instrumented PA instructions are executed dynamically.
★ Stack Canaries + Heap Relocation: As mentioned

earlier, more than ∼99% variables being used in input chan-
nels are stack variables (around ∼29300). Pythia which adds
one canary per stack variable, thus adding ∼ 29300 canaries
across all benchmarks. The CPA scheme requires an encryp-
tion during the stack allocation, and then a decryption for
loading into input channel function, followed by an encryp-
tion at store (Eq. 1). In contrast, the Pythia scheme adds one
extra layer of encryption before loading the input channel
use (Eq. 5). This extra ARM-PA encryption helps Pythia save
many added instructions in case of register spills. For ex-
ample, a variable spilled twice in the CPA Scheme would
have 7 PA instructions (4 encrypts and 3 decrypts), while the
Pythia requires only 4 PA instructions (3 encrypts and 1 de-
crypt right after the input channel). This reduction builds up
significantly across all statically allocated program variables.
Compared to statically allocated variables, dynamically

allocated vulnerable program variables that get relocated by
heap sectioning are significantly less prevalent in the bench-
marks. However, our analysis has shown that such variables

are usually utilized inside program loops. As a result, the
size of the isolated heap section is scalable. Furthermore,
benchmarks like 519.𝑙𝑏𝑚_𝑟 and 505.𝑚𝑐 𝑓 _𝑟 which don’t have
any vulnerable heap variables, incur overheads because of
heap sectioning (∼ 126𝑛𝑠 on average).

Attack Distance + Branch Security: Lastly, we compare
the attack detection capabilities of Pythia with a state-of-
the-art Data-flow Integrity (DFI) mechanism [14]. Across
all the benchmarks, the average distance of input channels
from respective branches is 83.29 LLVM instructions with the
longest distance being 500.perl_r with 149.76 LLVM instruc-
tions. DFI is unable to reason about pointer arithmetic and
field sensitivity cases. Therefore, DFI’s average attack dis-
tance is about 113.95 LLVM instructions since its backward
slice mechanism terminates whenever it encounters pointer
arithmetic and field sensitive cases being unable to reason
about them regarding their data-flow. On the other hand,
Pythia’s average attack distance is 127.35 LLVM instructions.
Pythia focuses on protecting all the variables encountered
using PA authentication rather than relying on verifying
underlying data flow leading to longer backward slices. How-
ever, in some cases, Pythia cannot extend the backward slice
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to the input channel due to complex inter-procedural alias
analysis encountered, which we do not tackle currently.

In addition, we compare the branch protection capability
of DFI and Pythia (please refer to Fig. 7(b)) as it shows the
security strength of both techniques. Recall that a given tech-
nique protects a branch if the technique can generate and
protect branch’s backward slice to the input channel. Due to
Pythia’s backward slice generation and ARM-PA protection
capability, Pythia protects an average of 92% branches across
all benchmarks against DFI’s 86.6%. Looking at the bench-
mark breakdowns, we can see Pythia offers more protection
than DFI, ranging from 0% to 17% with an average of 5.6%.
One important point to note here is that a small percent-
age difference can result in a huge number of actual condi-
tional branches (2% difference in 502.𝑔𝑐𝑐_𝑟 results in 7000
more branches, and 7% in 510.𝑝𝑎𝑟𝑒𝑠𝑡_𝑟 leads to 140000more
branches being protected by Pythia). In general, Pythia’s
protection is stronger for C++ codes mainly due to com-
plex pointer operations in the benchmark that terminate the
backward slices of DFI. Pythia offers over 90% protection
for 13 benchmarks, whereas DFI offers over 90% protection
for only 9 benchmarks. If we look at 100% protection cases
(all branches are secured), DFI only provides perfect pro-
tection for 519.𝑙𝑏𝑚_𝑟 , which has only 75 branches. In con-
trast, Pythia can fully secure three benchmarks (519.𝑙𝑏𝑚_𝑟 ,
505.𝑚𝑐 𝑓 _𝑟 and 525.𝑥264_𝑟 ), where 525.𝑥264_𝑟 has over 7000
branches. Overall, DFI and Pythia perform similarly in non-
pointer arithmetic cases, whereas Pythia has a significant
advantage in pointer-heavy and C++ code.

6.3 Real-World Examples
★ Nginx : We evaluated Pythia on 𝑛𝑔𝑖𝑛𝑥 [57], which is a
well-known web server that needs strict security guarantees.
Recent DOP attacks [17] has exposed the vulnerabilities of
Nginx. In addition, this application is multi-threaded, which
will be useful in stress testing the heap sectioning frame-
work. In our experiments, we used the same experimentation
scheme described in Blankit [62]. Nginx has a workload gen-
erator with 12 threads to create 400 concurrent connections.
We use nginx’s workload generator to satisfy requests for
Wikipedia’s home page for 3s, 30s, and 300s. The overheads
for nginx are based on the transfer rate degrading or not.
By averaging the performance across the three runs, the

CPA runtime overhead is around 49.13%, while Pythia drops
it to 20.15%. Nginx also uses a mixture of input channels
from glibc and their implementation variations beginning
with "ngx_". Despite having significantly fewer variables,
it has many input channels (720) with the majority being
copy/move input channels (712). In nginx, there is a very
high loop in the call chain, so the PA instructions added
will be repeatedly executed. As mentioned, Pythia has a
significantly higher attack distance than DFI for nginx and
also protects 300 more branches.

★ Motivating Examples: We rewrote the motivating
examples (§2.2) so that they could be tested on Pythia. We
added some extra instructions to prevent code restructing
due to optimizations by the compiler.
The first example is the String-Buffer Overflow attack as

seen in Listing 1. The critical vulnerability is the input chan-
nel ‘strcpy’ on line 14. Pythia identifies it as an input channel,
and classifies ’someinput’ as a stack variable. It will place
’someinput’ at the higher address of the current function’s
stack frame and add a canary after it with a random value.
A simple authentication check after the canary determines
whether the value has changed.

The second example of ProFTPd Vulnerability in Listing 2
is similar. In this case, the input channel ’sstrncpy’ will af-
fect rptr causing the overflow. Like the previous example, it
will take the variable to the higher address in the call stack.
Pythia creates the canary with a random value and encrypts
it initially then re-encrypts before the input channel. There
is an authentication after its use in the input channel. Any
overflow will crash the program during the canary’s check.
The third example in Listing 3 also has an overflow is-

sue. In this case, the overflow happens from ’k’ into ’l’. The
encryption and authentication will detect the overflow im-
mediately after the input channel.

6.4 Limitations
Pythia cannot detect stack buffer overflows resulting within
objects such as sub-fields of a struct. If this overflow affects
another object, Pythia’s stack canaries can detect it imme-
diately. To solve this problem of overflow detection within
sub-fields, stack canaries must be inserted within individual
fields. Furthermore, with precise alias analysis, the specific
fields being used by the input channels can be detected, and
canaries can only be created for such fields. This is a focus
of our future work.

7 Related Work
Memory Safety: One of the possible way to tackle non-
control data attacks (including control-flow bending) is to
prevent an adversary from exploiting memory errors by en-
suring general memory safety [24, 36, 54–56, 60, 66]. These
techniques prevent illegal memory access by introducing
non-trivial language extensions. However, memory safety
techniques have high overheads compared to Pythia. For
example, on legacy applications (only C applications), Soft-
Bound [54] has an average overhead of 67% and Softbound +
CETS [55] has an average overhead of 116%. Other bound-
checking based techniques that only handle spatial memory
errors, such as ASAN [68], has an average overheads of 76%
(with slowdowns upto 2.67x), heap-only approach LowFat-
Pointer [26] with an overhead of 113%, and LBC [30] with
an overhead of 23% (legacy applications). Our technique cur-
rently has 13.3% overhead with all the added instructions.
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Figure 7. (a) Percentage of variables in the backslice that are pointers. In addition, the percentage of conditional branches in a
given benchmark. (b) Comparison between the percentage of conditional branches secured by DFI vs Pythia.

The compiler-based [24, 36, 56] that type-safe pointers are
specifically made for C. Our work has been evaluated on
both C and C++ benchmarks. Other works focused on bound
checking the pointer memory accesses to ensure they don’t
access unauthorized memory locations [40, 42, 69, 79]. Most
of these works require specific hardware processors or exten-
sions. Pythia utilizes hardware extensions already available
in commercial ARM chips (seen in Apple products and Gravi-
ton servers [4]).
Stack Canaries-based Mechanisms: Majority of de-

fense mechanisms [63, 72, 78] that use stack canaries to
protect against non-control data attacks focus exclusively
on stacks, and usually do not defend against heap-based vul-
nerabilities. Moreover, such techniques are also vulnerable
to inter-procedural overflows, and stack bypassing where
an adversary can try to leak the canary value by performing
buffer reads. Pythia mitigates this by randomizing the ca-
nary value before every input channel, which minimizes the
probability of such attacks. In addition, these techniques are
stack-specific so they do not solve the heap buffer overflows.

Address Randomization: Another alternative method to
combat data attacks is to simply prevent an adversary from
locating privileged information by randomizing the data
layout [6–8, 28, 44]. Note that such techniques are geared
towards making it harder for the adversary to guess the
memory addresses - they are not designed to prevent control-
flow bending attacks like Pythia. Furthermore, to minimize
overheads, such techniques often randomize only a part of
the program data [71]. Recent works have also focused on
randomizing stack layout to reduce the probability of leaking
statically allocated safety-critical data [3, 8, 46, 50, 74]. Some
randomization techniques will figure out the actual locations
at runtime, or create somewhat of a padding. We simply
move the variables around at the compile stage so there is
no runtime overhead for randomization and our canaries
for vulnerable variables provide the least amount of padding
needed for stack protection.

Data-Flow Integrity (DFI) [14]: The goal of DFI is to first
compute a static data-flow graph and then verify whether
the transfer of dataflow facts at the runtime is permitted by
the graph or not. The problem with this approach is that it
requires maintaining and checking the dynamic dataflow in-
formation at runtime using SETDEF and CHKDEF for every
program variable, which causes overheads of up to 2.5x. In
particular, DFI is unable to reason about pointer arithmetic
and field-based alias analysis which results in its ability to
construct backward slices that can cover an input channel.

8 Conclusion
In this work, we proposed Pythia, a compiler-guided de-
fense framework that combines traditional compiler analysis
with pointer authentication. Pythia prevents control flow
bending by isolating vulnerable variables, tackling statically
allocated variables by re-orienting and adding canaries, and
dynamically allocated variables by heap sectioning. In our
evaluation, we found that Pythia’s performance-aware ap-
proach of using the isolation and pointer authentication has
an average overhead of 13.07% compared to the complete
pointer authentication baseline of 47.88%, without compro-
mising security guarantees. In addition, Pythia can secure
5.6 % branches more than DFI and fully secure 3 applica-
tions. Thus, it shows its effectiveness on pointer-intensive
applications and C++ codes in terms of coverage of input
channels.
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