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ABSTRACT
Android smartphones use a dedicated component, Keymaster, to
perform all their cryptographic, security-sensitive operations (e.g.,
storing cryptographic material and performing signing operations).
While all Android Keymaster implementations need to expose a
specific interface, their internals are hard to analyze, since their
source code is generally not available. Moreover, Android Keymas-
ters’ code normally runs in a Trusted Execution Environment (TEE),
where typical debugging functionality is not available. For these
reasons, Keymaster implementations cannot be analyzed using
white-box or gray-box automated approaches.

To address this issue, in this paper, we design, implement, and
evaluate AKF (Android Keymaster Fuzzer), a device-agnostic, dif-
ferential, black-box fuzzer. AKF uses a dynamic grammar to test,
in parallel, multiple Keymaster implementations, comparing their
behavior, looking for inconsistencies. AKF can operate on different
Keymaster implementations at the same time, including Keymaster
implementations running on different devices and in different TEEs
(e.g., ARM TrustZone and Google’s Titan-M).

We evaluated AKF by running it on 6 different Android devices,
where it correctly detected 87 implementation inconsistencies that
are a cause for concern in terms of both security and usability of
cryptographic operations, including a previously-known encryp-
tion bug affecting the Titan-M chip (CVE-2019-9465).
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1 INTRODUCTION
Smartphones are becoming increasingly widely used for security
sensitive operations which include making financial transactions,
being used as the second factor in 2FA schemes and much more.
To accomplish these security sensitive tasks, smartphones have
to make use of cryptographic operations such as encryption and
digital signing. In modern Android phones the execution of these
security-critical cryptographic functions is handled by a Keymas-
ter. In Android, a Keymaster is a software component (backed, in
many cases, by dedicated hardware components) exposing a com-
mon interface implementing cryptographic functionality, such as
generating keys, signing, and encrypting data. It also has access
to raw key material and is responsible for validating access con-
trol conditions on keys. Due to the security sensitive nature of the
services that Keymaster, it is of paramount importance that the
implementation of Keymaster be both secure and correct.

To ensure that the Keymaster is secure even against powerful
adversaries, such as those with root capabilities, the core function-
ality of a Keymaster usually resides inside a Trusted Execution
Environment (TEE), such as ARM’s TrustZone. Although safer than
the code running outside TrustZone, over the years TrustZone has
also been targeted by attacks [11, 19, 20, 23, 25, 27]. To counteract
these attacks, modern devices are equipped with an additional TEE,
running in a separate chip (e.g., Pixel Titan M [8]), normally called
StrongBox. StrongBox offers a higher level of security, and its
usage is encouraged by Android. [3]

Android Keymasters offer an extensive set of cryptographic prim-
itives, supporting dozens of different algorithms. This complexity
may potentially lead to implementation bugs that can lead to cata-
strophic security vulnerabilities [5]. Additionally, a Keymaster not
working as intended (i.e., failing to correctly sign with a specific
algorithm) will inevitably lead developers to not use it, resulting in
developers using less-secure options (i.e., a TrustZone Keymaster
instead of a StrongBox Keymaster). For these reasons, testing cor-
rectness of Keymaster implementations is crucial to ensure security.

Testing multiple Keymasters across multiple Android devices
poses its own challenges. The code running inside these TEEs varies
from vendor to vendor. Therefore, even though each Keymaster pro-
vides the same functionality, its underlying implementation can be
radically different. This poses a great challenge in terms of ensuring
that a Keymaster implementation is correct as each vendor/OEM
is responsible for ensuring the correctness of their Keymaster im-
plementation. To make matters worse, both TEEs inside one device
have their own separate implementation of Keymaster. Therefore,
having a unified testing mechanism for all these different imple-
mentations is crucial to ensure that the cryptographic operations
provided by these Keymasters are correct.
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Due to the complexity of the Keymaster API, off-the-shelf fuzzers
are unable to fuzz effectively as they have to deal with parsing logic
and inter-state dependencies. Furthermore, gray-box or white-box
fuzzing is impossible due to the fact that the source code of the
different Keymaster implementations is not available, and TEE
based implementations cannot be debugged or instrumented on
consumer devices. Additionally, existing test suites for Keymaster
are not comprehensive and thorough enough to test the entire
Keymaster. Finally, both test suites and off-the-shelf fuzzers fail to
check for correctness of cryptographic functionality.

Prior academic work has looked into fuzzing TEEs and the TAs
that reside inside them. For example, TEEzz [12] is the only fuzzer
built to target TEEs on Android smartphones and their TAs but is
limited to being able to target only three TEEs. It is also incapable of
fuzzing StrongBox implementations. Furthermore, TEEzz does not
specifically look for bugs in cryptographic implementations, but
instead focuses solely on typical memory corruption bugs. On the
other hand, tools like Cryptofuzz [4] that uses differential fuzzing
on cryptographic implementations of multiple libraries cannot be
extended to use with closed-source cryptographic implementation
like Keymaster as it also functions as a gray-box fuzzer that requires
code coverage information.

To address these issues, we propose AKF, a differential fuzzer for
Android Keymasters that is device agnostic and can be used to fuzz
any Android Keymaster regardless of device and type of TEE. AKF
utilizes the Hardware Abstraction Layer (HAL) to send the same
input to multiple implementations of Keymaster. To ensure efficient
and effective fuzzing, it uses a dynamically-built grammar that
generates type and state-aware inputs for our fuzzer. Furthermore,
since Keymaster APIs often require the output of other APIs as
input, our grammar dynamically infers state dependencies based
between cryptographic primitives.

AKF can simultaneously fuzz multiple Keymaster implementa-
tions across multiple devices, and, by comparing the results across
multiple Keymasters, AKF can reveal implementation discrepancies.
A comparison with similar efforts shows that AFK is the first of
its kind device agnostic fuzzer capable of fuzzing both TrustZone
and StrongBox versions of Keymaster to detect incorrectness of
cryptographic functionality.

To evaluate AKF and detect inconsistencies in Keymaster imple-
mentations, we run it simultaneously on multiple devices. This ex-
periment discovered various implementation inconsistencies rang-
ing from trivial cases, such as difference in exception handling or
unimplemented algorithms, to more security critical inconsisten-
cies, such as silent failures or random errors that result in broken
cryptography i.e., a signature generated by a private key that can-
not be verified by its public key. Our experiment also pinpointed a
previously-known vulnerability affecting Pixel smartphones (CVE-
2019-9465) [5].

We then manually analyzed each inconsistency to understand
their root causes as well as their implications. We found that these
inconsistencies not only have adverse effects on the security of an
Android device, but also pose problems to the developers that are
trying to use Keymaster functionality.

In summary, these are the main contributions of our work:

• We developed AKF [9], the first device-agnostic, automated,
differential fuzzer for Android Keymasters that is able to tar-
get both TrustZone- and StrongBox-based implementations.

• We designed a dynamic grammar for the Android Keymaster
HAL. Our grammar considers both, sequence of API calls, as
well as the individual parameters for each API call.

• We developed an infrastructure that allows parallel and dif-
ferential testing on multiple Android devices simultaneously.

• We used AKF on 10 Keymaster implementations across 6 dif-
ferent devices, and we found 87 implementation inconsisten-
cies (including a previously-known vulnerability). Some of
these found inconsistencies are due to incorrect or differing
implementations by vendors. Others are a result of missing
implementations due to vendor design choices. Some of these
inconsistencies lead to lack of usability of cryptographic op-
erations, while others are cause for security concerns.

• We detail our findings regarding the identified inconsisten-
cies. This includes identifying reasons for the inconsistencies
and their resultant effects on overall usability and security
of the Android ecosystem.

2 BACKGROUND
2.1 Trusted Execution Environments
In Android, the non-secure “rich" operating system coexists with
a “secure" isolated execution environment running in a Trusted
Execution Environment (TEE). TEEs can be implemented in a vari-
ety of ways, such as ARM’s TrustZone, which acts as the TEE for
the majority of Android devices. Systems that take advantage of
a TEE can store data and run code in two different contexts. The
trusted kernel and trusted applications (TAs) make up the secure
environment. They are both separated from the insecure environ-
ment and OEM-signed. Any code that resides inside a TEE can
only be altered by the OEM. Therefore, all TA implementations,
including the Keymaster TA, are done by the OEM. Furthermore,
the code inside a TEE is usually kept closed source.

Android offers APIs that can interact with “trusted" applications
without granting direct access to them, allowing third-party appli-
cations in the insecure world to access services that are run in the
secure environment. Moreover, since Android 9, Android devices
can come equipped with an additional, separate TEE. We will refer
to this second form of TEE as StrongBox. The StrongBox is a sepa-
rate Hardware Security Module (HSM) that has its own CPU, secure
storage, random number generator, and other forms of hardware
security features that make it a more secure and isolated form of
TEE.

2.2 Android Keymaster
Android applications and system services that wish to make use
of cryptographic and security features need to make use of them
through the Keymaster. The Keymaster can be broken down into
several layers. At the top level we have Android Keystore which is
the main point of entry for third party applications when it comes
to using Keymaster features. Android Keystore then forwards each
request to the Keymaster HAL (Hardware Abstraction Layer). The
Keymaster HAL is an OEM-provided, dynamically loadable library
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used by the Keystore service to provide hardware-backed crypto-
graphic services. The purpose of the HAL is to ensure that regard-
less of the underlying hardware and OEM-provided components,
the Android framework, and apps function in the same manner on
every Android device by exposing a uniform and consistent API.
To facilitate OEMs in their development of OEM-provided compo-
nents, Android provides HAL files that contain the specification for
what the OEM implementation needs to accomplish. This includes
all APIs that the OEM needs to expose to the HAL and details of
what the underlying implementation must achieve when an API is
called.

To keep things secure, HAL implementations do not perform any
sensitive operations in user space, or even in kernel space. Sensitive
operations are delegated to a TEE reached through some kernel
interface. In current Android smartphones this TEE is implemented
using ARM TrustZone. Inside TrustZone, there exists a Keymaster
Trusted Application (TA) which performs all the requisite sensitive
operations. Since the Keymaster TA exists inside a TEE, it is secure
frommost forms of attacks including root attacks (i.e., attackers able
to fully compromise the Linux kernel, running in the “non-secure”
world).

The method setIsStrongBoxBacked is used during the gen-
eration of a cryptographic key to select whether the StrongBox
Keymaster implementation should be used, instead of the Trust-
Zone one. If this method is not called at all Android defaults to using
TrustZone. Any subsequent cryptographic operation performed
with a key will be carried out by the Keymaster implementation
inside the TEE which stored the key.

2.3 Related Subsystems
Keymaster keys can be created in a way such that, in order to
use them, user authentication is required. This means, any cryp-
tographic operation that uses such a key, and therefore, requires
the use of user authentication, needs to interact with either the
Gatekeeper service or the Fingerprint Service. Both of these all
have their own TAs that reside inside the TEE. The most important
part of the interaction between these subsystems is the exchange
of AuthTokens. AuthTokens are generated by both Gatekeeper and
Fingerprint subsystems whenever a successful authentication takes
place. These are then transferred to the Keystore service, which
in turn forward them to the Keymaster whenever a cryptographic
operation needs to take place that requires user authentication.
Since many Keymaster operations can require user authentication,
in order to fuzz Keymaster to the fullest extent it is essential that
Gatekeeper subsystem is tested alongside them.

3 MOTIVATION & DESIGN
Security features and protocols in any computer system are almost
always dependent on the use of cryptography. In Android devices,
all cryptographic functionality is handled by the Keymaster. The
Keymaster is responsible for handling cryptographic key material
and using these keys to perform operations such as signing or
encrypting data.

In order to ensure that Android security features and protocols
are performing as advertised, it is essential that the underlying
cryptographic functionality be tested for correctness. Incorrect or

missing implementations of cryptographic functionality within
a Keymaster pose a serious threat to the security of Android de-
vices [5]. Even in cases where these incorrect implementations
cannot be directly exploited by an attacker, they can still lead to
scenarios where developers end up either not using certain security
primitives or using substandard security practices. This can in turn
lead to less secure Android apps, which is why it is essential that we
test every Keymaster implementation for the correctness of their
cryptographic functionality.

3.1 Challenges
In this section, we outline the primary challenges in developing
a fuzzer that can effectively and efficiently fuzz Keymaster imple-
mentations on multiple devices.
C1: Testing heterogeneous implementations. Keymaster con-
sists of multiple components ranging from the exposed HAL in-
terface down to the trusted application (TA) that runs inside the
TEE. TEE implementations, and therefore Keymaster TA imple-
mentations, are heterogeneous as they are OEM-dependent. Hence,
acquiring knowledge regarding the internal working of one TEE
to come up with a testing mechanism does not allow the gener-
alization of the solution to other TEE implementations. To make
matters more complicated, since Android 9, Android phones can
come equipped with multiple OEM implemented TEEs (TrustZone
and StrongBox). Furthermore, testing techniques, such as white-box
fuzzing, cannot be applied here due to the unavailability of source
code. Similarly, gray-box fuzzing, which requires some guiding prin-
ciple like coverage, also cannot be employed since it is impossible
to run custom, instrumented TAs in consumer devices.
C2: Generating valid test cases. Test suites designed for Keymas-
ter, such as the vendor test suite from Android, are not comprehen-
sive enough to thoroughly check for the correctness of its crypto-
graphic functionality. Furthermore, the purpose of such test suites
is not to check for the correctness of the underlying cryptographic
functionality but rather to check if basic Keymaster functionality
has been implemented. Similarly, typical off-the-shelf fuzzers also
do not focus on testing for correctness of underlying cryptographic
functionality but instead focus on things like memory corruption
bugs. Moreover, any test input generated by a fuzzer has to suc-
cessfully pass through rigorous parsing logic for the Keymaster
to even consider a valid input without discarding it immediately.
Furthermore, most Keymaster APIs are inter-dependent and require
passing the output of one API call as the input for another API call.
C3: Cryptographic bug oracle. Another crucial challenge is to
be able to test the correctness of cryptographic functionality. Most
fuzzers rely on crashes to detect bugs. However, using crashes as a
“bug oracle” is not effective to test cryptographic implementations,
since the absence of crashes does not imply that the cryptographic
functionality works as intended. For instance, a bug leading to
incorrectly accepting tampered signatures does not lead to a crash,
but it still has significant security consequences.

3.2 Performance of existing solutions
To the best of our knowledge no one has attempted to create a
fuzzer just for Keymaster. However, there are some previous works
that look into fuzzing Android TEEs.
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TEEzz [12] is a TEE aware fuzzer which can fuzz Trusted Ap-
plications (TAs) inside a TEE. They achieve their fuzzing they use
the OEM proprietary libraries in the “non-secure" world to infer
information about the type of data that needs to be sent to the
TA. Even though the TEEzz has been designed to fuzz three of the
most popular TEE implementations on Android devices, it cannot
cater to Keymasters on other TEEs including all StrongBox TEEs
since it requires knowledge of the OEM proprietary libraries which
differ for different OEMs and different TEEs. Therefore, TEEzz only
partially satisfies C1. TEEzz does have the capability of inferring
value dependencies just like our dynamic grammar so it does satisfy
C2. Finally, TEEzz fails to satisfy C3 as it looks only for bugs that
can cause crashes. This means that TEEzz fails to identify incorrect
cryptographic implementations, unless they result in a crash. For
example, an incorrectly implemented signature verification algo-
rithm could result in invalid signatures being verified successfully
without triggering any crash. Unfortunately, retrofitting TEEzz to
perform differential fuzzing in order to detect incorrect crypto-
graphic implementations is not trivial, as the inputs it generates
are customized for each target TEE. For this reason, using TEEzz
would require changing the entire input generation process as well
as adding a “comparator” component to compare the results of the
tested cryptographic operations.

TEEfuzzer [14] is a coverage guided fuzzer intended for use with
OP-TEE [6] only. Despite it being able to fuzz a popular TrustZone
operating system in OP-TEE, it was not designed nor is it capable
of fuzzing other TEE implementations or the Keymasters inside
them as Keymaster implementations on real devices, unlike OP-
TEE, are closed source and therefore, not suited for fuzzing with
instrumentation-based coverage-guided fuzzers. Hence, TEEfuzzer
is unable to achieve C1. Being reliant on coverage information for
fuzzing, it is unable to meet the challenge of fuzzing a closed source
Keymaster implementation as seen on real devices, so it fails C2.
TEEfuzzer does not test for the correctness of the cryptographic
primitives and therefore, it fails C3. Modifying TEEfuzzer to detect
cryptographic inconsistencies is extremely challenging since we
would need to convert it into a black-box fuzzer so it can be com-
patible with real device Keymasters. Moreover, it only detects bugs
based on crashes and has no means of detecting cryptographic bugs
that do not result in a crash, just like TEEzz.

The fuzzer by Melotti et al [21] for the Titan-M chip is, to the
best of our knowledge, the only fuzzer for any StrongBox or HSM
on an Android phone. Unfortunately, that is the only TEE it is
capable of fuzzing and therefore fails to achieve C1. However, they
do implement a structure aware black-box fuzzer that should be
capable of generating inputs that can be correctly parsed and thus,
it satisfiesC2. Like every other fuzzer on this list, it also is incapable
of checking for the correctness of the cryptography implemented
inside the TEE and hence, fails C3. Since this fuzzer was designed
specifically for the Titan-M chip, it cannot be readily modified to
be used to target other Keymaster implementations. In addition, it
still suffers from the problem of the two fuzzers discussed above
in its inherent inability to detect cryptographic bugs that do not
result in a crash.

Fuzzers like Cryptofuzz [4] apply the concept of differential
fuzzing to test multiple cryptographic libraries for inconsisten-
cies. Cryptofuzz requires the creation of a separate module for any

Table 1: Fulfillment of Challenges, ✓=Fulfilled, ✗=Not Ful-
filled, =Partially Fulfilled

Fuzzer TrustZone StrongBox C1 C2 C3

TEEzz ✓ ✗ ✓ ✗
TEEfuzzer ✓ ✗ ✗ ✗ ✗
TM fuzzer ✗ ✓ ✗ ✓ ✗

CryptoFuzz ✗ ✗ ✗ ✓
AKF ✓ ✓ ✓ ✓ ✓

new library that it needs to fuzz. Creating these modules requires
knowledge of the internal working of the target library, which
in the case of Keymasters is proprietary information. Therefore,
Cryptofuzz only partially satisfies C1. Furthermore, Cryptofuzz is
an instrumentation-based coverage-guided fuzzer and therefore,
cannot be used with a closed source Keymaster implementation
and fails to satisfy C2. However, Cryptofuzz is able to detect in-
correct cryptographic implementations by comparing the outputs
of multiple targets and therefore satisfies C3. For these reasons,
using Cryptofuzz for fuzzing Keymasters is not straightforward.
Firstly, it would require creating amodule for each different Keymas-
ter implementation. This module creation process would require
knowledge of the proprietary OEM libraries for each Keymaster
implementation. Secondly, real device Keymasters are closed source
and therefore, cannot be fuzzed by coverage guided fuzzers like
Cryptofuzz.

3.3 AKF Design
In this section, we list the design choices we made in order to
overcome the mentioned challenges.
Design Choice 1: Fuzzing the HAL. As a solution to the het-
erogeneity of the different Keymaster implementations (C1), our
approach fuzzes them by generating inputs at the HAL layer. This
allows our fuzzer to remain device agnostic as well as have the
ability to fuzz both TrustZone and StrongBox implementations.
We also use the same approach to fuzz the Gatekeeper subsystem,
which allows us to test Keymaster cryptographic functionality that
is only used while interacting with Gatekeeper.
Design Choice 2: Dynamic Grammar Generation. In order for a
fuzzer to generate test cases that not only pass through the parsing
logic but are also able to explore new states (C2) we need a grammar.
However, creating a complete grammar is time consuming and
would require recreating the grammar every time some changes are
enacted. Therefore, we create a dynamically-generated grammar
for the HAL. The grammar generation consists of three parts. First,
the grammar generator parses through the provided HAL files to
infer input types for each API from the source code. Second, the
grammar generator automatically creates a set of rules regarding
the dependencies between each API. In order to achieve this, it
compares the type of the return value of each API and checks if
the same type is used as an input for some other API. In this case,
our grammar generator infers that when the return type of API 𝛼
matches the input type of API 𝛽 that API 𝛼 should always be called
before API 𝛽 . Lastly, during fuzzing if our heuristic determines a
sequence of API calls is unable to explore a new state, the grammar
generator dynamically appends a new rule in the grammar to ensure
that inputs with such sequences are no longer generated.
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Figure 1: AKF overview

Design Choice 3: Differential testing. We detect incorrect cryp-
tographic implementations (C3) of Keymaster by performing dif-
ferential testing. In particular, we rely on the fact that if the same
input test case was given to different Keymaster implementations,
the overall result should be the same on all devices. More precisely,
our fuzzer sends the same input test case to multiple different Key-
masters. Note that here an input test case does not refer to a single
API call but to a sequence of API calls each with their own parame-
ters. By comparing the end results for this input test case for each
Keymaster, we can determine if any of the Keymaster’s deviate
from the expected result. An expected result is defined as the re-
sult given by the majority of the tested Keymasters. For example,
consider an input test case with a sequence of calls that starts with
key pair generation, then uses the private key to sign some data,
and lastly uses the corresponding public key to verify the signature.
If in this case 9 out of 10 of the tested Keymasters have an end
result in which everything worked correctly and the verification
was successful, we would treat this as the expected result. On the
contrary, the 1 Keymaster that returned a different end result (e.g.,
failure for the verification), will be treated as the deviant outcome.
Such inconsistencies cannot be detected by typical fuzzers as they
do not trigger any detectable crashes.

Table 1 summarizes how well existing solutions fulfill our design
goals and requirements and how our design is able to successfully
solve the aforementioned challenges.

4 IMPLEMENTATION
In this sectionwe provide implementation details of AKF (illustrated
in Figure 1).
Fuzzing Manager

Fuzzing Manager is the core component of AKF that handles all
communication to and from the other components. These compo-
nents run both on the target devices and the fuzzing system. We
decided that the crux of the fuzzing engine needs to be implemented
outside the target device for efficiency purposes. Since the fuzzing
engine was on a separate system, the need arose for a manager that
could handle all inter-device communication where necessary. The
fuzzing manager oversees all communication to and from multiple
Android devices using ADB.

We implemented the Fuzzing Manager as a Python script. To
interact with the Fuzzing Binary and to send and receive files from
the target Android devices it uses ADB commands. It also makes

use of ADB commands to initiate Gatekeeper authentication and is
responsible for automating the authentication for Gatekeeper. This
authentication is necessary in order to test Keymaster functionality
that is reliant on AuthTokens generated by Gatekeeper. We set the
target devices to use PIN as the primary authentication method. By
using ADB, we can automatically input the PIN without requiring
physical interaction.

AKF uses Peach [7] for its input generation and mutation. Peach
is a grammar-based fuzzer which generates inputs based off of a
provided specification (i.e., grammar), which in our case is created
by our State Model Generator.

The output of Peach is stored in an Input Format file. The input
format file is essentially the fuzzing input. Due to the state depen-
dencies between API calls, sometimes a fuzzing input requires a
value that was returned by a previous API call. For example, when
trying to use a key to encrypt some plaintext, the identifier for the
key to be used for the encryption is part of the input. However, this
identifier was returned by a previous API call to generate a key.
To handle these situations, the Input Format file can sometimes
have blank spaces that mark regions of the input that need to be
filled with results of previous API calls. These blank spaces are filled
by the fuzzing manager before it is passed on. In order to fill in
the blank spaces in the Input Format file generated by Peach, the
Fuzzing Manager retrieves the output files from the target device
and extracts the requisite results necessary to fill the Input For-
mat file before passing the Input Format file to the target device
where the Fuzzing Binary uses it. Figure 2 shows an example of
how this is done by the Fuzzing Manager. In this example, when
Peach generates an Input Format file for the begin() API call, it
leaves a blank space for the keyBlob as it requires the output from
the generateKey() API call. This blank space is then filled in by
the Fuzzing Manager before the begin() API is called.

It is important to note that using these blank spaces is crucial for
efficiency as a trivial fuzzer would continue to generate random
inputs to fill these blank spaces until it matches the value returned
from the previous API call. This naive approach would result in
immediate exceptions being triggered with no increase in coverage.

Key generation is the most expensive operation in terms of time,
therefore, we decided to reduce that time by not creating the key
every time. By reusing the same key for different sequences of
calls we could save a lot of time considering that key generation
on a StrongBox Keymaster took about 5 seconds. To implement
this, the Fuzzing Manager keeps track of all keys created. Anytime
a generated sequence of calls included a key generation call, the
Fuzzing Manager first checks if that key already existed. If the key
already existed, the Fuzzing Manager removes the key generation
call from the Input Format file. Then the fuzzing Manager uses the
previously stored key blob to fill the Input Format file if required.
There is essentially only one key for each available Keymaster
algorithm that existed at one time. Moreover, to ensure AKF did not
completely skip over key generation testing, the Fuzzing Manager
allows a key generation call to go through once every hundred
times, essentially replacing the key.
Dynamic Grammar The first step of AKF’s fuzzing process is the
generation of the grammar. The Dynamic Grammar generator is
initialized by providing it access to the HAL files of Keymaster. HAL
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API calls 
performed generateKey(...) begin(...) finish(...)

Output of 
API calls sent to 
Fuzzing Manager

{keyBlob: “\x11\x12…”}
{keyCharacteristics: “AES, CBC”}

{operationHandle: “OPH1…”}
{nonce/IV: “1234”} {output: “ciphertext”}

Input from
Peach Fuzzer {KeyParams: “AES, CBC”}

{purpose: “Encrypt”}
{keyblob: “blank space”}

…
{nonce/IV: “1234”}

{operationHandle: “blank space”}
…

{input: “plaintext”}

Blank spaces 
(if any) filled by
Fuzzing Manager

{purpose: “ENCRYPT”}
{keyblob: “\x11\x12…”}

…
{nonce/IV: “1234”}

{operationHandle: “OPH1…”}
…

{input: “plaintext”}

Figure 2: An example of how inter-state dependencies are resolved by the Fuzzing Manager. The input produced by Peach has
blank spaces that mark regions that require output values of previous API calls that are filled by the Fuzzing Manager.

files include all the necessary details required to create a working
implementation for that HAL. The most important details for us
here are the API calls, their input parameters and types, and lastly
their return type. By using this information, the Dynamic Grammar
generator comes up with two sets of initial rules.

The first set of rules pertain to each individual API call. These
rules define the type of input that is expected by each API call. For
this first set of rules, the Dynamic Grammar generator converts the
HAL file into a Peach Pit file, which contains the grammar Peach
uses to generate input. This conversion is done by parsing the
parameters of eachAPI call within theHAL file and converting them
into DataModel elements within the Peach Pit file. This procedure
allows us to program Peach to generate inputs that match the
parameter types required by the Keymaster API. In some cases, the
parameter type for an API defined in the HAL file can be a custom
data type. In these cases, the Dynamic Grammar generator searches
for that custom data type within the “types.hal” file (one of the
Keymaster HAL files), which contains the definition of the custom
data types. By checking the definition of the custom data type, we
can convert the custom data type into default data types and then
into DataModel elements within the Peach Pit file.

The second set of rules pertains to the sequence of calls that will
be used in one fuzz input. To create this initial set of rules for the
sequence of calls, the Dynamic Grammar generator checks if the
input type for an API call is the return type of some other API call
within the HAL file. This allows our Dynamic Grammar to infer
basic state dependencies between API calls such as “a key must be
generated before encryption".

After the initial set of rules have been established by the Dynamic
Grammar, AKF continuously adds more rules depending on the
results of the fuzzing. The Dynamic Grammar uses a heuristic to
determine which new rules to add. To achieve this, it receives the
input test cases and their corresponding results from the Fuzzing
Manager. The heuristic is then used to ascertain if the results are
significantly different by doing a bitwise comparison of the result

of each API call as well as the overall result. If the results from
each Keymaster are significantly different from each other, then,
the Dynamic Grammar determines that the input fuzzed a new
state and therefore inputs like this one are more useful. Sequence
of calls that are unable to generate any new result even after being
used as an input multiple times are considered stale. The Dynamic
Grammar stores a list of the last hundred sequences of calls that
are stale and continuously uses this list to update a frequency table.
This frequency table counts how many times a subsequence of two
API calls occurs within the 100 stored stale sequences. Once the
frequency goes past a certain threshold the Dynamic Grammar
considers that particular pair of API calls as the likely culprit for
causing staleness, Therefore, it establishes a new rule disallowing a
sequence of calls that includes a subsequence of that pair of API
calls.

For AKF, the Dynamic Grammar generator is used both for Key-
master as well as Gatekeeper so that a grammar exists for both
HAL interfaces. This is necessary in order to allow AKF to fuzz
Keymaster functionality that requires interactions with Gatekeeper.
Fuzzing Binary The fuzzing binary is responsible for handling
all actions inside the target device itself. Its main responsibility
is to send the same input to the multiple Keymaster, record their
responses, and return them.We designed it to be a system service so
that it can interact with the Keymaster HALs directly. We chose to
fuzz the Keymaster through the HAL layer as it is the deepest layer
in the Android ecosystem before the implementation of Keymaster
becomes OEM-dependent. Furthermore, the fuzzing binary is also
responsible for interacting with the Gatekeeper HAL and sending
any AuthTokens generated by Gatekeeper to each Keymaster HAL
(Section 2.3).

The fuzzing binary is implemented as an Android system service
capable of interacting with the HAL layer. It is a simplistic service
that reads the input file sent by the Fuzzing Manager and uses that
as the input to send to the HAL layer. It is able to interact with both
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Keymaster HAL as well as Gatekeeper HAL. In order to deploy it
to a target Android device we need to root the device.
State Model Generator This is the first step in creating a fuzz
input within AKF. Since AKF is a differential fuzzer, each fuzz input
needs to test not just one single API call within Keymaster, but
instead it needs to test a sequence of calls to see if it generates the
same output at the end of the entire sequence of calls. Therefore,
each fuzz input is a sequence of calls that is going to be tested in a
single run.

A problem the State Model Generator has to deal with is the
infinite length for a sequence of calls. To counter this problem, we
decided to set a limit for the number of single API calls that are
allowed within a sequence of calls. In order to determine this limit,
we first observed how Keymaster APIs were called when crypto-
graphic operations were used by an Android app. Our observation
showed that for any complete cryptographic operation (i.e., a veri-
fication after signing or decryption after encryption) only used at
most two calls of a single API. Based on this observation our State
Model Generator limits the number of single API calls that can be
inside a sequence of calls to three, i.e., a call to generateKey() can
only be made three times within a sequence of calls. This helps us
limit the total number of fuzz inputs that can be produced and still
effectively test edge cases where multiple uses of a single API call
might trigger a bug.

We also implemented the State Model Generator as a Python
script. It uses randomization to select the API calls to add to a
sequence of calls. It counts the number of times it has added one
API call to the sequence to ensure it does not go over our defined
limit of three. The generated sequence of calls is then compared to
the current set of rules established by the Dynamic Grammar. If the
generated sequence of calls does not violate the rules it is then used
to populate the XML File that is used by the Peach Fuzzer to generate
the Input Format file. If it is in violation of the grammar rules, the
generated sequence of calls is discarded, and a new generation
process is started from scratch. Furthermore, the sequence of calls
generated by the State Model Generator is also able to cater to
Gatekeeper API calls. This allows AKF to fuzz both Keymaster and
Gatekeeper together with a single sequence of calls that contains
both Gatekeeper and Keymaster API calls.
Automatic Comparator The automatic comparator is the last step
in the AKF fuzzing process. The purpose of the comparator is to
compare and differentiate between responses returned by multiple
Keymasters (G2). It is the essential step in determining whether
there is some implementation inconsistency that exists between
two implementations of the same feature.

Some Keymaster APIs return values in a non-deterministic way.
For example, an encryption operation on the same plaintext will re-
turn different ciphertexts on each Keymaster. The happens because
the ciphertext is dependent on the raw value of the key being used
which is again different for each Keymaster. A difference in the
returned ciphertext in such cases is not an inconsistency. Therefore,
naively comparing return values will result in false positives.

To overcome this challenge, the return value of each API call
is subject to three distinct levels of comparisons. Firstly, all API
calls are expected to have the same return type regardless of the

Table 2: List of used Android Devices with their available
Keymasters (KMs) and Android Versions, FN=Factory New,
U=Updated

ID Device Name KMs Version
D1 Pixel 3 (FN) TZ & SB Android 9
D2 Pixel 3a (U) TZ & SB Android 12
D3 Pixel 5 (U) TZ & SB Android 13
D4 Samsung S21 (FN) TZ & SB Android 12
D5 Xiaomi 11 Lite (FN) TZ Android 11
D6 Hikey960 TZ Android 9

Keymaster being used. This comparison detects inconsistencies that
result in exceptions or some other error in execution.

The second level of comparison is comparison of return value
format. This level of comparison is for API calls that are expected to
have return values with different raw values butmatching format on
each Keymaster. For example, an encryption operation will return
different ciphertexts but the size of the ciphertext should match.

The third level of comparison is raw return value comparison.
API calls that are expected to return matching values are subject to
this level of comparison. This includes operations like decryption
which should return the same plaintext for each Keymaster.

The automatic comparator is programmed with a set of rules
regarding what level of comparison to use for each API call. This
allows the comparator to determine inconsistencies in expected
behavior while keeping false positives at a minimum.

5 EVALUATION
We designed our evaluation to answer the following questions:

• RQ1: How efficient is AKF at generating valid test cases
using the dynamic grammar?

• RQ2: Can AKF find implementation inconsistencies?
• RQ3: How long does it take for AKF to expose implementa-
tion inconsistencies?

• RQ4: How much code coverage can AKF achieve?

For RQ1, we study the throughput of valid cases from AKF.
Next, for RQ2, we ran AKF on 6 different Android devices to look
for implementation inconsistencies in their Keymasters. To answer
RQ3, we ran AKF 5 times on the same device to determine how long
it takes on average to find one known inconsistency. Finally, for
RQ4, we ran AKF on OP-TEE, an open-source TEE implementation,
to evaluate the coverage achieved by AKF. Experiments for RQ1
and RQ3were conducted with a Google Pixel 3 while the fuzzing
machine had an Intel i5-11400F processor with 16 GB Ram. The
experiment forRQ2made use of multiple devices as listed in Table 2.
The experiment for RQ4 was run on a HiKey960 board with 4 GB
Ram.

5.1 Performance
To evaluate the performance of AKF (RQ1), we measure its through-
put first. We measure both the total number of inputs being gen-
erated as well as the number of valid inputs being generated. We
classify an input as valid if it results in an exception-less execution
for at least one of the Keymasters under test. We partition the data
between varied sizes for the sequence of calls. This is necessary
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Figure 3: Throughput (measured as inputs per second) of
valid inputs generated by AKF with and without the use of
Dynamic Grammar.
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because, as the sequence of calls gets longer, the throughput de-
creases. This is expected as each additional API call requires its
own additional processing time. To evaluate the performance of the
dynamic grammar we then do an ablation study in which we dis-
able the dynamic grammar generation. To achieve the partitioning
between varied sizes for the sequence of calls we force our State
Model generator to only generate sequence of calls with a fixed
size. We ran each size of chain for 10 minutes for both Dynamic
Grammar inputs and Non-Dynamic Grammar inputs and calculated
the rate of inputs being processed per second. For the total number
of inputs, we used the combined rate of both Dynamic Grammar
inputs and Non-Dynamic Grammar inputs that were sent over 20
minutes total. It should be noted that there was virtually no differ-
ence between the rate of total inputs processed when running the
experiment with or without Dynamic Grammar as it has no effect
on the total inputs processed but rather on the percentage of valid
inputs.

Figure 3 summarizes our results. As the table shows, the propor-
tion of valid test cases increases significantly when using dynamic
grammar generation. For instance, for a sequence of calls of size
4, the proportion of valid inputs to total inputs was 0.85 with the
dynamic grammar, whereas, without the dynamic grammar, the
proportion drops to 0.63. Overall, our dynamic grammar approach
increases the performance of AKF by 26% percent.

Answer to RQ1: AKF’s throughput of valid test cases
increases by 26% due to the use of dynamic grammar.

5.2 Discovery Results
Then, we evaluated AKF by running it on multiple devices to
check for implementation inconsistencies between their Keymas-
ters (RQ2). We chose a variety of devices covering different vendors,
types of Keymaster implementations (TrustZone vs. StrongBox),
and Android versions, resulting in a total of 6 devices and 10 Key-
master implementations (Table 2).

Some devices we labeled as Factory New (FN). These devices
are those that were never updated out of the box. Therefore, these
devices contain Keymaster implementations that have not been

Table 3: Summary of the types of inconsistencies found. Note
that some inconsistencies can be categorized into multiple
types.

Inconsistency Type No. Found
Inconsistency among different Keymasters (♦) 68
Inconsistency within the same Keymaster (⋆) 24

Inconsistency with respect to expected behavior (■) 9
Total Unique Inconsistencies 87

due solely to missing implementations 34

Table 4: Basic Block Coverage achieved by the Vendor Test
Suite, AFL, and AKF

Test/Fuzzer % BB Coverage Achieved After 24 Hrs
Keymaster Gatekeeper

Vendor Test Suite 26.4 33.1
AFL 8.1 11.6
AKF 37.7 49.3

updated. This allows us to discover implementation inconsistencies
that existed in previous versions of some devices that may not exist
in an updated device (U).

We divide the implementation inconsistencies we found into
three categories. The first category is inconsistencies among dif-
ferent Keymasters (♦). These are inconsistencies that exist due to
differences in OEM implementations such as different exception
messages across devices for the same problem. For example, de-
vice D4 triggers an exception at the time of key generation when
SHA512withECDSA is used. Whereas D1, D2, and D3 allow the gen-
eration of the key, but trigger an exception when the key is used
for signing.

The second category of inconsistencies is inconsistencies within
a single Keymaster (⋆). These are inconsistencies that exist due to
a difference of behavior within the same implementation for similar
test cases. For example, when handling unsupported algorithms,
StrongBox Keymaster on device D4 does not allow the generation
of the key. However, only in the case where the algorithm is set
to SHA1withRSA, it allows the key to be generated but throws an
exception when someone attempts to use the key. We believe these
inconsistencies are most likely due to negligence of the OEM, which
results in one scenario being handled completely differently than
all other similar scenarios.

The last category of inconsistencies is inconsistencies with re-
spect to the expected behavior (■). We define expected behavior as
the normal execution of a cryptographic operation. For example,
it is expected behavior that any ciphertext generated by a public
key should be decipherable by the corresponding private key. An
example of this inconsistency would be if the generated ciphertext
could not by decrypted by the private key used when generating
it. These are the more dangerous inconsistencies as the OEM Key-
master implementation fails to perform a cryptographic operation
in the correct manner, which may lead to an exploitable vulnera-
bility. Moreover, it can cause cryptographic schemes using specific
algorithms to operate incorrectly in some devices.

Table 3 summarizes the number of inconsistencies we found,
while Table 5 details the full list of implementation inconsistencies
we found in all the analyzed Keymaster implementations.
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Table 5: Implementation inconsistencies found by AKF in the
10 tested implementations. TZ=TrustZone, SB=StrongBox,
DX=Device, ♦=Inconsistency among different Keymas-
ters, ⋆=Inconsistency within the same Keymaster,
■=Inconsistency with respect to Expected Behavior.
Circled numbers indicate the corresponding findings (as
detailed in Section 6).

D1 D2 D3 D4 D5 D6
TZ SB TZ SB TZ SB TZ SB TZ TZ

ECDSA Signature Algorithms
NoneWithECDSA
SHA1WithECDSA ❹♦

⋆
SHA224withECDSA ❺♦ ❽♦ ❽♦ ❸♦

SHA256withECDSA
SHA384withECDSA ❽♦ ❽♦ ❽♦ ❸♦

SHA512withECDSA ❽♦ ❽♦ ❽♦ ❸♦

RSA Signature Algorithms
MD5withRSA ❺♦ ❽♦ ❽♦ ❸♦

NONEwithRSA ❶■ ❶■

SHA1withRSA ❹♦
⋆

SHA1withRSAPSS ❺♦ ❶■ ❶■ ❹♦
⋆

SHA224withRSA ❺♦ ❽♦ ❽♦ ❸♦

SHA224withRSAPSS ❺♦ ❽♦ ❽♦ ❸♦

SHA256withRSA
SHA256withRSAPSS
SHA384withRSA ❽♦ ❽♦ ❽♦ ❸♦

SHA384withRSAPSS ❽♦ ❽♦ ❽♦ ❸♦

SHA512withRSA ❽♦ ❽♦ ❽♦ ❸♦

SHA512withRSAPSS ❽♦ ❽♦ ❽♦ ❸♦

RSA Encryption Algorithms
RSAECBNoPadding
RSAECBOAEPPadding
RSAECBOAEP/SHA1/MGF1 ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆ ❻⋆

RSAECBOAEP/SHA224/MGF1 ❺♦❼■ ❽♦ ❽♦ ❸♦

RSAECBOAEP/SHA256/MGF1 ❼■ ❼■ ❼■

RSAECBOAEP/SHA384/MGF1 ❽♦ ❽♦ ❽♦ ❸♦

RSAECBOAEP/SHA512/MGF1 ❽♦ ❽♦ ❽♦ ❸♦

RSAECBPKCS1Padding
AES Encryption Algorithms
AESCBCNoPadding
AESCBCPKCS7Padding
AESCTRNoPadding
AESECBNoPadding
AESECBPKCS7Padding
AESGCMNoPadding ❷■

HMAC Algorithms
HmacSHA1
HmacSHA224 ❺♦ ❹♦

⋆
❹♦
⋆

❹♦
⋆

HmacSHA256
HmacSHA384 ❹♦

⋆
❹♦
⋆

❹♦
⋆

❹♦
⋆

HmacSHA512 ❹♦
⋆

❹♦
⋆

❹♦
⋆

❹♦
⋆

Answer to RQ2: AKF found 87 unique implementation
inconsistencies.

We note that the detected inconsistencies are due to multiple rea-
sons, which will be discussed more in detail in Section 7.1. One of
these reasons is missing implementations. We can see from Table 3
that 34 out of the 87 detected inconsistencies are classified as such
solely due to missing implementations. As discussed ahead in Sec-
tion 6 finding ❽, these detected inconsistencies can be considered
as “false positives”, leaving the other 53 detected inconsistencies as
“true positives”.

5.3 Discovery Efficiency
To evaluate AKF efficiency (RQ3), we run it till it finds a known
implementation inconsistency and measure the time taken. We do
this 5 times and average the time taken to account for randomness.
The inconsistency we chose (which we will explain in detail in
Section 6) was signature verification using SHA1withRSAPSS in a
Pixel 3 StrongBox Keymaster.

AKF is able to consistently find the inconsistencywith an average
time of 23 hours and 46minutes with a standard deviation of 2 hours
and 7 minutes. In comparison AKF without the use of dynamic
grammar finds the inconsistency in an average of 26 hours and 11
minutes with a standard deviation of 2 hours and 53 minutes.

Answer to RQ3: AKF can find potentially dangerous im-
plementation inconsistencies within a day.

5.4 Code Coverage
To measure code coverage, we focus on the only TEE implemen-
tation for which source code is available, i.e., OP-TEE. For the
purposes of measuring coverage, we used a modified OP-TEE ver-
sion that uses AFL-style instrumentation to measure achieved code
coverage within TAs, by populating a coverage bitmap [1].

We first ran AKF on the modified OP-TEE for 24 hours. We also
ran Android’s vendor test suite for Keymaster and Gatekeeper and
measured its coverage to use as a baseline for comparison. We
then also ran AFL [2] for 24 hours to have a comparison against
an off-the-shelf fuzzer. The results of our coverage measurement
are shown in Table 4. The table shows that AKF achieves a higher
coverage than the baseline vendor test suites and existing fuzzers,
like AFL.

Answer to RQ4: AKF provides significantly more code
coverage than any existing fuzzer or test suite.

6 FINDINGS
In this section we detail the inconsistencies AKF found, listed in
Table 5.
❶ Failure to verify signature. We identified two signature algo-
rithms, NONEwithRSA and SHA1withRSAPSS, where the signature
that was generated by a Keymaster could not be verified by the
same Keymaster. The problem with NONEwithRSA existed on all 3
Pixel Devices as well as the Samsung Device (D1, D2, D3, D4). We
reported this to both Google and Samsung. Google later fixed this
issue, and the algorithm now works as intended on the newer and
updated Pixel devices.

The problemwith SHA1withRSAPSS exists on the StrongBox Key-
master of the newer and updated Pixel devices (D2, D3). Interest-
ingly, this problem does not exist in the factory new Pixel 3 (D1)
which suggests that this is a regression bug, caused by an update.
We reported this bug to Google who classified it as infeasible, and
it still remains to be fixed. However, as we will see below (❺),
classifying it as infeasible is incorrect.

These bugs are examples of inconsistencies with respect to the ex-
pected behavior (■). Since the algorithm is able to create a signature
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in the first place, the developer clearly intended for the algorithm
to work for verification as well. The verification, however, fails
without giving any exception. Upon further analysis we identified
the signature being generated was correct and the problem was
with the verification. Due to the silent nature of the failure, i.e.,
there is no exception or warning for a developer to indicate that the
algorithm might not work with these Keymasters, any Android app
that uses these algorithms might encounter unexpected problems
that may cause some denial of service on apps running on these
devices. Furthermore, it might be possible that the verification im-
plementation ends up incorrectly verifying a signature allowing
for an adversary to take advantage.
❷ Keystore operation failed on decryption. AKF was able to
reproduce the bug in CVE-2019-9465 [5]. Even though the bug
has been patched on the newer and updated models of Google
Pixel phones, the bug still exists on the unupdated Pixel 3 (D1).
The problem lies in the implementation of the AESGCMNoPadding
algorithm in the StrongBox Keymaster which causes the ciphertext
that is produced to be incorrect, resulting in the inability to decipher
it.
❸ Ill-timed exceptions.We found that if an app tries to use the
StrongBox Keymaster on Pixel devices (D1, D2, D3) using an algo-
rithm that is not supported, the Keymaster still allows the app to
create the key. Only afterward, when the developer would try to
use the key, the app would get an “Invalid Argument” exception. In
contrast, the Samsung (D4) StrongBox Keymaster implementation
does not allow the key to be generated at all (except for a couple
of cases that we will discuss next) and gives an exception when
an app tries to generate a key. This is an example of an inconsis-
tency between Keymasters (♦) as the StrongBox Keymaster of two
different OEMs handle the same situation differently. It must be
noted though, that the Samsung (D4) way to handle unsupported
algorithm makes more sense as the Pixel (D1, D2, D3) StrongBox
Keymaster allows the developer to create a key despite the fact that
an app would be unable to use it, resulting in a waste of resources
and confusion for an app developer.
❹ Inconsistent exceptions. We found that in both the Samsung
(D4) StrongBox Keymaster and the Pixel (D1, D2, D3) StrongBox
Keymaster, there were cases where the exception being generated
was not consistent with the exceptions seen elsewhere within the
same Keymaster (⋆).

For example, in Samsung (D4) StrongBox Keymaster, the excep-
tion to indicate the algorithm was unsupported normally came at
the time of key generation when an unsupported algorithm was
used. However, in the case of signature algorithms using SHA-1 di-
gest, this exception came at the time of signing. Furthermore, in the
case of SHA1withECDSA signing algorithm, the exception message
was completely different to the rest. Normally, an “Unsupported
Digest" exception would be triggered, at the time of key generation
when an unsupported algorithm was used. However, for this par-
ticular algorithm, it is an “Invalid KeyBlob” exception at the time
when signing was attempted. Moreover, when the unsupported
algorithm was an HMAC algorithm, the exception triggered at the
time of key generation would be unlabeled (i.e., “-59") in the case
of the Samsung (D4) StrongBox Keymaster.

Pixel (D1, D2, D3) StrongBox Keymaster usually gives an ex-
ception when the developer tries to use a key for an unsupported
algorithm, instead of earlier when the developer generates the key.
However, in the case of unsupported HMAC algorithms, the excep-
tion is thrown immediately, at the time of key generation.
❺ A regression bug. We found that the StrongBox Keymaster in
the factory new Pixel 3 (D1) actually had 2 advantages over its
newer/updated family devices (D2, D3) (♦). Firstly, it supported all
algorithms with SHA-224 and MD5 as the hashing algorithm. This
was apparently removed later on for unknown reasons. Secondly, it
still had a working implementation for SHA1withRSAPSS. The same
algorithm cannot be used in the more modern devices (D2, D3)
where it is unable to verify signatures as described above (❶). This
is interesting as the bug report we had submitted for this particular
algorithm to Google was classified as “infeasible”, even though
there is a working implementation of this algorithm available in a
previous version (D1).
❻ A complex algorithm. We found that the encryption algo-
rithms RSAECBOAEP/SHA/MGF1padding have inconsistent imple-
mentations in most Keymasters. The algorithm would function
correctly when used with SHA-1, however, using the SHA-2 family
of hashes resulted in an exception at the time of decryption (⋆).
Only the Pixel (D1, D2, D3) StrongBox Keymaster was able to im-
plement this algorithm correctly when the SHA-2 family of hashes
were used (❼). Even the TrustZone Keymaster implementations
on all 6 would fail with an exception. We reported this bug to both
Google and Samsung. Google did not provide any worthwhile re-
sponse, however, Samsung clarified that these algorithms could be
used with SHA-2 family of hashes if special parameters were speci-
fied when using the algorithm. We confirmed that this was indeed
correct, however, we still consider this an inconsistency within the
same Keymaster (⋆) as the SHA-1 variant of the algorithm does
not require these special parameters.
❼ Working Unexpectedly. As mentioned, we found that using
the encryption algorithms RSAECBOAEP/SHA/MGF1padding with
the SHA-2 family of hashes without specifying additional param-
eter specifications usually resulted in an exception. However, the
Pixel (D1, D2, D3) StrongBox Keymaster was able to implement
this algorithm correctly when the SHA-2 family of hashes were
used (■). This case is interesting for two reasons. Firstly, this is
the only case where the inconsistent Keymaster probably has the
correct implementation. Secondly, even though we reported this
inconsistency to Google they still did not feel it was important to
make the implementation consistent between their own TrustZone
and StrongBox Keymasters. This results in a developer being able
to correctly use this algorithm in a Pixel StrongBox but not in a
Pixel TrustZone.
❽ Inconsistencies due to missing implementation. We found
that these inconsistencies were detected solely due to the missing
implementation of the algorithm within the StrongBox Keymaster.
We consider these inconsistencies as false positives of our fuzzer,
since we speculate that developers may have intentionally decided
not to implement such algorithms.

Nevertheless, we still find these cases interesting since they show
that there are cases in which OEMs have decided not to support
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some algorithms in one device on one Keymaster but not the other.
In addition, we note that the exceptions triggered when a developer
attempts to use these unsupported algorithms are inconsistent and
hard to interpret. For instance, the Pixel Strongbox gives an “Invalid
Argument” exception if the algorithm is not supported which causes
confusion for the developer as it does not inform the developer
about the missing implementation and lack of support for this
particular algorithm. As we will discuss in Section 7.3, we believe
that developers should have clearer ways to understand when an
algorithm is supported or not by a specific Keymaster.

7 DISCUSSION
In this section we discuss possible reasons for the found incon-
sistencies and possible ways to make cryptographic operations in
Android devices more secure and usable.

7.1 Potential reasons for inconsistencies
The major reason for inconsistencies we found was missing im-
plementations of algorithms. The reason behind having limited
number of algorithms supported might be due to the limited space
available for code in StrongBox. However, the results in Section 5.2
suggest that this might not always be the case. For example, the Fac-
tory New Pixel 3 was able to support algorithms that used SHA-224
as the digest, whereas the newer/updated Pixel phones no longer
support SHA-224 algorithms in their StrongBox Keymaster imple-
mentations. All Pixel phones use the same Titan-M chip; therefore,
it appears that at least one more digest and its related algorithms
could be supported. Furthermore, the design for the StrongBox im-
plementation in Pixel phones is extremely limited as they chose to
support only two hashing algorithms, namely SHA-1 and SHA-256.
Ironically, one of these algorithms, namely SHA-1, has been proven
to be broken by Google researchers themselves [26]. It would be
our recommendation that SHA-1 algorithms be declared obsolete
not only for StrongBox Keymasters but from all Android devices.

7.2 Limited usage of StrongBox Keymasters
One key factor in making cryptographic operations in Android
more secure is to use the most secure available Keymaster, which
is the StrongBox Keymaster. We conducted a small-scale analysis
of 1,048 popular Android on Google Play Store within the Busi-
ness, Finance, Tools, Communications, and Medical categories to
determine how often the StrongBox Keymaster is used by apps. We
found that despite being available since Android 9, most apps are
still not using the StrongBox Keymaster. This can be due to multiple
reasons.

Firstly, as we saw in Section 5.2, the number of algorithms avail-
able for use with the StrongBox Keymaster implementation are
very limited in comparison to the TrustZone Keymaster. Therefore,
any developer looking to use an algorithm not supported by the
StrongBox Keymaster would be forced to use the TrustZone Key-
master. Another possible reason for the limited usage of StrongBox
could be that average Android developers have limited knowledge
of security practices and cryptography [18]. Therefore, if a devel-
oper was asked to use a cryptographic operation, they would try
to adopt what is most-widely used regardless of the availability
of more secure options. For example, for signing, one of the most

secure options would be to use SHA512withRSAPSS with a Strong-
Box Keymaster. However, due to this algorithm not being available
for use with the StrongBox Keymaster, the developer now has to
make an almost impossible decision. They can choose to go for
the more secure algorithm in SHA512withRSAPSS but use it with a
TrustZone Keymaster, or they could use a StrongBox Keymaster
and use a less secure algorithm. Even security experts might have
trouble deciding which option is more secure. Therefore, Android
developers with limited knowledge of cryptography may decide to
just avoid using StrongBox.

One more plausible reason developers may not use StrongBox
Keymaster is that they might have encountered one of the many
inconsistencies in the StrongBox Keymaster implementations we
saw in Section 5.2. A developer using an algorithm that worked
completely fine with the TrustZone Keymaster could encounter
issues (ranging from exceptions to incorrect cryptographic opera-
tions) when attempting to use the same algorithm with a StrongBox
Keymaster. This would prevent the developer from switching to
using a more secure Keymaster unless the developer decides to
change the algorithm they use, which would require changes not
only on the app but also on any back-end server that is reliant on
that cryptographic algorithm. Therefore, it is probable that in such
scenarios the developers decide it is more beneficial to stay with
the TrustZone Keymaster.

7.3 Recommendations
Motivated by the results, and by the low usage of StrongBox, we
make the following recommendations to improve the security and
usability of Keymaster implementations.

As we saw in Section 5.2, when it came to different OEMs, their
Keymaster implementations would often behave differently from
each other. This is problematic from a developer’s point of view
who does not understand why the same code runs differently on
different Android devices. Furthermore, there is no way for a de-
veloper to know which algorithms are supported by a Keymaster
on a certain device. In fact, this information is not available in
the official Android documentation, and the inconsistent excep-
tions (❹) provided by different Keymaster implementations can
further confuse developers. Hence, we recommend Android to lay
out guidelines as to how these situations should be handled. For
example, Android could specify as a mandatory requirement for
a Keymaster implementation that in the case of an unsupported
algorithm the exception must be consistently called “Unsupported
algorithm” and should be thrown as soon as the developer attempts
to generate a key to be used with that algorithm.

Additionally, we can make things easier for developers by au-
tomatically using the most secure option. Allowing developers to
choose the algorithm they wish to use might be useful for compati-
bility purposes, however, this is not true when it comes to choosing
Keymaster. The Android framework should automatically choose
the most secure available TEE for the chosen algorithm. This would
ensure that the most secure form of Keymaster is used regardless
of the algorithm chosen. On the contrary, the default Keymaster
(i.e., if the developer does not specify a Keymaster) is the TrustZone
Keymaster.
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Lastly, we saw that despite these implementations being de-
ployed in the real world for a long time the inconsistencies we de-
tected were never found before. Despite all the test suites employed
by the OEMs/vendors, incorrect implementations have continued
to go unnoticed. This shows that there is a clear need for better
testing when it comes to Keymaster implementations, potentially
using automated approaches, such as the one we implemented in
AKF.

8 LIMITATIONS
One way in which AKF is limited in fuzzing Keymaster is that it is
unable to fuzz the interactions of the Fingerprint subsystem with
Keymaster. Although in theory it should be no different from the
interactions with the Gatekeeper subsystem as almost all interac-
tion between the subsystems is based on the use and exchange of
AuthTokens generated by both Fingerprint and Gatekeeper. Never-
theless, there could still be some implementation inconsistencies
within the Fingerprint subsystem that may lead to some errors in
Keymaster when they interact.

Therefore, one aspect of our future work is to be able to automate
biometric authentications on Android phones therefore allowing
us to do automated testing of the Fingerprint subsystem and other
related subsystems that interact with Fingerprint subsystem like
Keymaster. Since the biometric authentication directly takes place
inside a TEE, it is hard to come up with a solution that might be
able to automate this problem from a software perspective without
reverse engineering the TEE software. But this solution cannot
be utilized across all devices as it relies on TEE knowledge which
is different for each device. To achieve automated biometric au-
thentication, we can employ hardware-based techniques where a
robot could be designed to provide biometric authentication when
prompted.

Another limitation of AKF is that there is no limit to the size
of the sequence of calls. For example, generating a key ten times
in a row in considered a valid sequence of calls. To deal with this
issue the State Model Generator limits the use of a single API
call. Therefore, it is possible that AKF was unable to detect some
implementation inconsistencies that could only be detected when
single API was called more than three times in a single sequence of
calls.

Furthermore, the AKF requires that a device be rooted. This not
only inhibited our ability to conduct experiments on more devices
but also means that AKF can only work on off-the-shelf devices
that can be rooted. In order for AKF to work on more devices it
requires assistance from OEMs. Since OEMs can always root their
own device, it is our recommendation that AKF be utilized by OEMs
when making changes to their Keymaster implementation as an
efficient method to determine whether or not their implementation
is consistent with other Keymaster implementations including the
ones on the same device.

9 RELATEDWORK
Fuzzing has been widely used to find vulnerabilities in several
types of software, including operating systems, web browsers, and
network protocols. However, the use of fuzzing in the context of
TEEs is still an emerging area of research.

The TEEzz [12] framework is designed to perform fuzz testing on
TAs running on Android devices using dynamic instrumentation to
generate and execute inputs. TEEfuzzer [14] uses heuristic seed gen-
eration to fuzz OP-TEE. Huang et al. [16] built a system for fuzzing
OP-TEE which uses their own purpose-built seed generation tech-
niques as well as automatic bug reproduction. Melotti et al. [21] are
the first to look into a StrongBox TEE by doing a security analysis
of Google Titan-M chip which serves as the StrongBox TEE for all
Pixel phones. Shakevsky et al [24] look into Samsungs’ TrustZone
TEE and Keymaster and found some serious vulnerabilities in the
implementation of Keymaster. Partemu [15] is a TEE OS emulation
technique that can be used to fuzz TAs that reside inside TEEs
without actually requiring a hardware device. Unfortunately, this
technique only works when TAs are unencrypted, which is usually
not the case. Another common technique to fuzz TEEs is to use a
device driver interface as all TEEs must eventually communicate
with the “Normal World" using driver interfaces. Difuze [13] is
an interface aware fuzzer that can fuzz kernel drivers which can
be extended to fuzz TEEs using the TEEs’ kernel driver interface.
Overall, these works demonstrate the importance of fuzzing in the
context of TEEs and the potential for finding previously unknown
vulnerabilities in these systems.

Differential fuzzing has been used to test for bugs by comparing
results instead of requiring explicit crashes. JIT-PICKER [10] is a
tool which does differential fuzzing for JavaScript engines by using
state probes to compare the behavior of the JavaScript interpreter
and the JIT compiler. DifuzzRTL [17] is a differential fuzzing tool
that detects CPU RTL vulnerabilities by comparing the execution of
an RTL design against a golden model. NEZHA [22] is an efficient
input format agnostic differential testing framework which tracks
relative behavioral differences between multiple programs. Crypto-
fuzz [4] is a tool designed to do differential fuzzing on multiple
cryptographic libraries to look for implementation inconsistencies
These works have shown that differential fuzzing is an effective tool
to find bugs especially when the purpose it to look for correctness
of implementation.

10 CONCLUSION
This paper presents AKF, a device-agnostic fuzzer capable of ef-
fectively fuzzing both TrustZone and StrongBox variants of An-
droid Keymasters, looking for improper implementations of cryp-
tographic primitives. Using AKF, we found 87 unique inconsisten-
cies that we manually analyzed further to discover their implica-
tions in terms of usability and security. Our analysis showcases the
limitations of previous testing mechanisms in regard to detecting
cryptographic inconsistencies within Keymaster implementations.
Additionally, the found inconsistencies not only lead to unexpected
behaviors or potential vulnerabilities but can also force developers
to use less secure cryptographic primitives.
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