Check for
Updates

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI

Aya Fukami
University of Amsterdam
Netherlands Forensic Institute
Netherlands

ABSTRACT

The Replay Protected Memory Block (RPMB) in modern storage
systems provides a secure area where data integrity is ensured
by authentication. This block is used in digital devices to store
pivotal information that must be safeguarded against modification
by potential attackers. This paper targets the authentication scheme
of the RPMB in three different eMMCs from a major manufacturer.
A glitch was injected by sending an electromagnetic pulse to the
target chip. RPMB authentication was successfully glitched and
the information stored in two target eMMCs was overwritten with
arbitrary data, without affecting the integrity of other data.

CCS CONCEPTS

« Security and privacy — Security in hardware.

KEYWORDS
RPMB, replay attack protection, glitching, mobile forensics

ACM Reference Format:

Aya Fukami and Richard Buurke. 2024. Keyless Entry: Breaking and Entering
eMMC RPMB with EMFL In Proceedings of the 17th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec °24), May 27—
30, 2024, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3643833.3656114

1 INTRODUCTION

In modern smart devices, commonly used storage systems often
implement a Replay Protected Memory Block (RPMB). The RPMB is
a hardware partition in modern storage devices such as Embedded
Multi Media Card (eMMC), Universal Flash Storage (UFS), and Non-
volatile Memory express (NVMe).

Writing data to the RPMB requires authentication using a cryp-
tographic hash function, namely a keyed-hash message authentica-
tion code (HMAC) using SHA256. The HMAC is calculated over the
data frame, excluding some fields such as the HMAC itself. The key
used for the calculation is programmed into the storage device only
once. In modern embedded devices, because RPMB authentication
relies solely on the confidentiality of the pre-shared key, a secure
component such as a Trusted Execution Environment (TEE) takes
ownership of the RPMB [10]. Figure 1 shows the basic concept of
accessing the RPMB.

By issuing a RPMB read request command, anyone can read the
content of the RPMB data. Therefore the RPMB is not suitable for

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0582-3/24/05.
https://doi.org/10.1145/3643833.3656114

This work is licensed under a Creative Commons Attribution
International 4.0 License.

145

Richard Buurke
Netherlands Forensic Institute
Netherlands

eMMC Host Device

—

[Write counter
I Write data Address

SHA256 . s/

SHA256

Write counter

RPMB

HMAC

Write data %

Figure 1: RPMB write sequence block diagram

HMAC

storing confidential information. Rather, the RPMB is commonly
used to store information that is immutable for a normal user, for
example:

e An anti-rollback counter / version information [14, 16]
o Cryptographic public keys [13]
e Bootloader lock state [31]

As an example, an anti-rollback counter stored in the RPMB can
be used as part of the key derivation process. When the device is
wiped, because of a factory reset or by exceeding the maximum
number of allowed password attempts, the anti-rollback counter
in the RPMB is incremented. In this scenario, even when restoring
the entire contents of flash user data, key derivation will fail and
the encrypted user data cannot be decrypted [14].

Since authentication is performed by a cryptographic hash func-
tion using a pre-shared key, integrity of the information stored
in the RPMB is guaranteed as long as the secrecy of the key is
maintained.This research tries to break this authentication scheme,
enabling an attacker to overwrite data in the RPMB without knowl-
edge of the pre-shared key. We targeted the RPMB in eMMCs due to
their availability, and usage in a wide variety of embedded products,
such as smartphones [14], IoT devices [16] and automotive systems
[24].

Several techniques for attacking RPMB authentication exist, and
will be covered more extensively in Section 3. For this experiment
fault injection (FI) was applied, which is an umbrella term for a
collection of techniques that aims to introduce faults, or glitches,
into a device leading to unintended behavior. This can be achieved
through software [21, 30] or hardware methods [26, 28, 29]. Com-
monly used hardware methods are:

e Shorting the power supply (crowbar glitching, or voltage
fault injection (VFI))
e Introducing electromagnetic pulses (EMFI)
e Illumination with a laser beam (LFI)
e Changing the clock signal
Fault injection can be used to circumvent security checks in

software whilst the program itself does not contain any (known)
vulnerabilities. Unintended behavior that can aid the attacker is

https://doi.org/10.1145/3643833.3656114
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643833.3656114
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643833.3656114&domain=pdf&date_stamp=2024-05-27

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

also referenced as a fault primitive, such as skipping instructions
or corrupting CPU register values.

By applying EMFI on an eMMC device we were able to write
arbitrary data to the RPMB, without knowledge of the pre-shared
key and thereby breaking the RPMB authentication scheme which
compromises the integrity of all stored data. We then applied the
same method to a different model eMMC device which was also
successfully compromised.

This research makes the following contributions:

e We show how EMFI can be applied on an eMMC device to
enable writing of arbitrary data to the RPMB, using commer-
cially available tools.

o A detailed description on how to characterize the susceptibil-
ity to EMFI, on eMMC controllers from a single manufacturer,
through arbitrary code execution is provided.

o Advantages and disadvantages of applying EMFI, compared
to other methods for breaking RPMB authentication are
outlined.

The structure of the rest of this paper is as follows. In Section
2, we discuss the threat model related to our research. Section 3
discusses related work to this research. The targets and physical FI
setup are described in Section 4. Section 5 outlines how the firmware
of our target devices was obtained, and reversed engineered. This
section also describes how this information was used to run our own
fault observer code on the target, to characterize the susceptibility
to EMFI The process for successfully applying EMFI on two of
the targets, is detailed in Section 6. The impact of this attack is
discussed in section 7 before concluding in section 9.

2 THREAT MODEL

Because the RPMB is a type of authenticated storage, it is often used
for storing non-confidential information that requires integrity pro-
tection. Examples include version information used in anti-rollback
mechanisms [9, 14, 31], bootloader lock state [9, 31] and asymmet-
ric public keys [9, 13]. Modification of this type of information
by an unauthorized attacker can result in an increased attack sur-
face, or in some cases, a fully compromised system. Fukami, et al.

Aya Fukami and Richard Buurke

(2024) [14] showed that it is possible to decrement an anti-rollback
counter stored in the RPMB to return a wiped Android device to a
non-wiped state. Anti-rollback mechanisms are also often used to
prevent software components from being downgraded to a vulner-
able state [2, 3].

Modern Android systems are commonly based on the ARM
Trusted Firmware-A reference design, which implements a chain-
of-trust (CoT) for the boot process [5]. Figure 2 shows a simplified
representation of a typical secure boot implementation. Devices
based on the ARM Cortex-A architecture feature a system-on-chip
(SoC) which can switch between multiple contexts. The normal
operating system (OS) runs in the so-called "normal world" while a
dedicated second operating system is executed in the "secure world".
This separation provides an additional layer of security since the
OS running in normal world cannot access memory and resources
used by the secure world.

After powering on the device, the first boot stage, embedded in
the ROM of the SoC, is executed. The secondary boot stage is loaded
from flash and verified using a public key stored in eFuses [23].
Each subsequent boot image is verified before being executed. The
Android Bootloader (ABL) implements Android Verified Boot (AVB),
and is responsible for starting the Android operating system. If the
bootloader is locked, a public key verifies the integrity of the boot
image, and hashtrees for the system and vendor partitions [1]. Some
vendors, such as NXP [9], recommend storing the bootloader state
and AVB key in the RPMB area of an eMMC. By manipulating this
information an attacker can unlock the bootloader or modify and
resign the Android operating system, resulting in code execution
with EL1 privileges in the normal world.

3 RELATED WORK

Recovering the secret key has been the main focus of security
research related to HMAC authentication. Jeong et al. showed
that they could successfully recover the key by injecting faults
and reducing the number of computational rounds to HMAC [19].
Belenky et al. published their research on a side channel attack
against HMAC. The authors successfully simulated recovery of

Power On
Secure World Normal World
BL3V/Secure
ROM Monitor EL3
BL1 -] - —- - = = = = = == = = = = = = = =
Laad_s and > BL33/ABL EL?
verifies
eFuses i
Public Key
BL2 ————> BL32/Secure OS Linux Kernel EL1

Figure 2: ARM Trusted Firmware-A secure boot overview

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

Table 1: Target chip properties

Target number 1 2 3
eMMC version 4.41 5.1 5.0
Part no. 0xc23 (Cortex-M3) | 0xc27 (Cortex-M7) | 0xc23 (Cortex-M3)

Architecture | 0xOF (ARMV7-M) | 0xOF (ARMV7-M) | 0xOF (ARMV7-M)
Variant 0x02 0x01 0x02
Revision 0x00 0x01 0x00
MPU enabled No No No
VTOR 0x40000 0x60000000 0x40000

the key through a template attack [7]. Our research focuses on
the application of HMAC in a real-world device, where the HMAC
authentication itself needs to be skipped.

Western Digital published a white paper on vulnerabilities in
the eMMC RPMB [34], and suggested that by performing a “man-
in-the-middle" attack, one can trick the host system to believe that
writing the data was successful, whilst in the background different
data is being written. Their attack is effective if targeting a “live”
device, where an attacker can monitor the command issued by the
host. In our scenario, arbitrary data is written to the RPMB without
relying on the behavior of the host device.

Fault injection attacks against mobile or IoT devices have been
widely performed by multiple researchers, as reported by Gangolli
et al. and Shepherd et al. [15, 29]. In their research, SoCs are the
main target to introduce glitches in order to skip the cryptographic
authentication and gain root privileges on the target device.

Multiple publications discuss attacking ARM Cortex-M micro-
controllers. Bozzato et al. showed that it is possible to improve
the effectiveness of voltage glitching attacks by injecting an arbi-
trary waveform instead of shorting the power supply [8]. They
validated their approach on multiple microcontrollers including
an STM32F103 (Cortex-M3) and STM32F373 (Cortex-M4). Ruminot
et al. focused on improving voltage glitching attacks by reducing
the voltage supplied to the target just outside of normal operating
parameters [27]. Werner et al. created a tool that is able to find fault
injection parameters in an automated manner, by combining char-
acterization data with a simulated model [33]. The authors applied
their approach to a Cortex-M4 microcontroller, using a dual-laser
fault injection setup.

Although the aforementioned research targets similar devices as
in our research, they do not use EMFL Instead, they opt for VFI or
LFI. Furthermore, research by Ruminot et al. [27] and Werner et al.
[33] did not circumvent any real-life security mechanisms.

To the best of our knowledge, this is the first work to perform
EMFI against eMMC RPMB authentication. The hardware designs
of the targets are proprietary and unknown. We also did not have
access to the source code, or reference implementations, of the
firmware.

4 EXPERIMENT SETUP

4.1 Electromagnetic Fault Injection

We chose to perform EMFI for our attack scenario since it does
not require any additional hardware modifications and provides
localized injection of faults. LFI requires thinning of the package to
expose the internal transistors, we therefore did not consider this

147

method. The external clock signal might be susceptible to clock
glitching, however we assumed that it was not directly connected
to the application processor (AP) embedded in the controller. Since
an eMMC device is powered from an external source, the core
voltage of the controller (Vddi) and memory peripherals (Vcc) can
be trivially manipulated. Therefore it might also be possible to apply
voltage glitching to these devices.

4.2 Target Selection

The goal of this research is to bypass the cryptographic authen-
tication of the RPMB in an eMMC. Prior to the actual attack, we
decided to run a profiling process in order to identify the location
of the chip where it is most susceptible to the EMFI attack. For this
purpose, we selected eMMCs from a single manufacturer where we
have access to their firmware. We selected 3 eMMC devices shown
in Table 1 on availability in our forensic lab. Upon request from
the manufacturer, we refer to these devices as Target 1, 2, and 3,
respectively. Prior research suggests that our target devices contain
a Cortex-M micro controller, and that the firmware of these devices
can be read using vendor-specific commands [6]. In 2018, Avraham
demonstrated that it was possible to read/write memory regions of
an eMMC controller, embedded in a mobile phone, using propri-
etary vendor commands [6]. The author subsequently released the
proof-of-concept code on his public repository [25]. We observed
that these vendor commands are still implemented in an eMMC
that is currently in mass-production. Therefore we assume that
they are still applicable to a wide range of devices.

The firmware of each target device was extracted by using an
EasyJTAG flasher box [35], which supports the required vendor-
specific commands.

4.3 Glitching Setup

Each target eMMC was mounted on a custom breakout adapter in
order to avoid the need for reballing and resoldering. The socket
for the adapter is soldered onto a custom-made printed circuit
board (PCB), which is mounted onto the XYZ table (Genmitsu 3018
PROver V2) with a custom-made fixture for precise positioning and
repeatability. Electromagnetic pulses were injected by a NewAE
ChipSHOUTER (CW520) [17], using a one millimeter clockwise
winded probe. Figure 3 shows an overview of the setup. Communica-
tion with the target eMMC was implemented using a programmable
I/O (PIO) based state machine, running on a Raspberry Pi Pico. The
ChipSHOUTER is also triggered by the state machine program,
using a fixed delay after sending the eMMC command. The rest of

WiSec '24, May 27-30, 2024, Seoul, Republic of Korea

the fault injection process was orchestrated by software running
on a Raspberry Pi 4.

A Tektronix DPO7354C oscilloscope was used to monitor eMMC
communication and measure EM emissions from the application
processor (AP). EM measurements were used to determine the
timing of eMMC operations, as described in Section 6.1. However
any four channel scope with around 200MHz bandwidth should
suffice, such as a PicoScope 3000 Series.

Whilst industry level FI equipment is available, cost effective
off-the-shelf products were used as much as possible for this attack
setup.

Figure 3: Target chip mounted to a custom PCB, using an
adapter, while applying an EM pulse using a ChipSHOUTER
(CW520)

5 CHARACTERIZATION

Given that EMFI enables us to localize the attack, we first needed
to identify the most vulnerable location of the target eMMC. We
therefore acquired and analyzed the firmware of each target device,
in order to implement a simple fault observer program that could
run on the target device. The fault observer enabled us to monitor
the effect of the EM pulse at different locations.

5.1 Device Identification

We extended the mmec-utils program [22] to include the vendor-
specific commands discussed in Section 4.2. We assumed that the
flash controller was based on the ARM architecture, and so our
version of mmc-utils was used to read the System Control Block
(SCB), at offset 0xE000ED00, and the Memory Protection Unit (MPU)
configuration, at offset 0xE0O00ED90. Table 1 combines information
from the SCB, MPU configuration and Device identification (CID)
register.

First, we noticed that the MPU is disabled for all chips. According
to the ARMv7-M Architecture Reference Manual [4], the default
system memory map is used when the MPU is disabled. By default,
the Code, SRAM and RAM memory segments are mapped readable,
writeable and executable. The vector table offset register (VTOR)
points to the main vector table of the device. The second entry in
this table holds the address of the reset handler, which is the entry
point for our ROM code.

148

Aya Fukami and Richard Buurke

Arbitrary Code Execution. The code section also holds the vector
table for standard eMMC commands and can therefore be overwrit-
ten using vendor-specific commands. For Target 2 this table was
located in the RAM segment, but the same principles apply. To gain
arbitrary code execution, the payload was first written to an unused
memory region, and the entry for CMD8 (SEND_EXT_CSD) in the
vector table was updated with the address of our routine.

void fault_observer(void) {
uint32_t total_iterations;
uint32_t value;
uint32_t j;
uint32_t i;
extcsd *ext_csd;

ext_csd = PTR_EXT_CSD;
total_iterations = 0;
value = 0;
j=0;
do {
j =
i=
do {
value = value + 7;
i=1i+1;
} while ((int)i < 62500);
total_iterations = total_iterations + i;
} while ((int)j < 4);
ext_csd->total_iterations =
ext_csd->value = value;
(*(code *)CMD8)();
return;

j+1;
0;

total_iterations;

Listing 1: Fault observer implementation

Our fault observer implementation was directly written in assem-
bly. Listing 1 shows the decompilation of this code for readability.
It consists of a nested for loop that increments an unsigned inte-
ger value for every iteration. The total number of iterations and
incremented value are written to the beginning of the extended
CSD register, which according to the current JEDEC standard [18]
is unused. Finally the original CMD8 routine is executed, returning
the contents of the extended CSD register. By checking the stored
values, it is possible to determine if the controller was affected by
the EM pulse. This approach worked for all targets.

5.2 Profiling

By introducing EM pulses at different positions of the chip while
the fault observer code was running on the target, we determined
which areas of the device were the most affected. Based on the
return values of the fault observer, each attempt was categorized as
Normal, Crash, or Glitch. If the fault observer returned the expected
value, the result was categorized as Normal. If the response from the
target was all 0x00 or 0xFF, then the result was categorized as Crash,
since at this point the target chip cannot behave normally unless
a hard reset is performed. If the result from the fault observer

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI

Type=Normal

Type=Normal

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

Type=Normal

(mm) (mm) (mm)
11 2510 A 24 10
107 9 7 225 97 24
97 20 8) 8 -
8 7) 7 - 2
7 15 6 225 6
6 -
s 5 - 22 5)
4 1047 as 47
34 3 7 3 18
2 2 7 2
14 1 1 16
04 0 ‘ 0
T t t t t t t t t t T
01234567 8 9 101112131415(mm) 0123 456 7 8 9101112 (mm) 012 3 456 7 8 9 101112 (mm)
(mm) Type=Glitch Type=Glitch

O B N W H U1 O N 0

0123 456 7 8 9 101112131415(mm)

Type=Crash

O R, N W H U O N 0 O

0123456 7 8 9 101112131415(mm)

(a) Profiling results: Target 1

0123 456 7 8 9 101112 (mm)

Type=Crash

0123456 7 8 9 101112 (mm)

(b) Profiling results: Target 2

3
3

)

- H |
1
0.5
0

0123456 7 8 9101112 (mm)

=
o

O B N W b U1 O N 0 O

Type=Crash

O B N W H U1 O N 0 VO

0123456 7 8 9 101112 (mm)

(c) Profiling results: Target 3

Figure 4: Profiling results for each chip using the fault observer. The lighter the color, the more susceptible the chip is for the

categorized result at that location.

was different from the expected value, but the target chip still
operated normally, then it was categorized as Glitch. The probe was

positioned using a Imm by 1mm grid, overlayed on the target chip.

A glitch attempt was performed at each position for 25 iterations
in total. An EM pulse with a strength of 200V and length of 100ns,
using a clockwise winded probe with a Imm diameter, was used for
profiling. A heatmap was created of each categorized result (Figure
4).

As shown in Figure 4, it is clear that Target 1 is susceptible to
the glitching attack at multiple locations. Whereas Target 2 and 3
can be only glitched or crashed if the EM pulse is sent around the

149

perimeter of the chip. Nevertheless, through profiling, it is clear that
a fault can be injected using EM pulses, to affect the code running
on the eMMC controller for each target. The heatmap was then
compared with the internal structure of each target, using X-rays,
and the location of the flash controller in each target chip was
identified. Figure 5 shows the X-ray image of each target. Based on
the bonding wires of the internal controller, the estimated location
of the controller is highlighted with an arbitrary color.

For Target 1, the location of the “hot spot”, where the fault
observer can be successfully glitched, matches the location of the
controller (Figure 4a and 5a). Therefore it is possible to assume that

WiSec ’24, May 27-30, 2024, Seoul, Republic of Korea

Aya Fukami and Richard Buurke

(a) Target 1 (b) Target 2 (c) Target 3

Figure 5: X-ray inspection of target chips, highlighting the physical location of the controller

Table 2: Glitching parameters for each target
| Target | 1 | 2 | 3 |
X position (mm) 154 | 159.8 | 159.8
Y position (mm) -62.5 | -58.1 | -58.5
Z position (mm) -25.7 | -25.7 | -25.7

Pulse Voltage (V) 200 | 200 200

Pulse Duration (ns) | 100 100 100

the fault is directly injected to the logic of the controller. On the
other hand, the hot spot of Target 2 does not match the location of
the controller (Figure 4b and 5b). Rather, crashes or glitches appear
to happen when the EM pulse is sent directly on top of one of the
bonding wires. This bonding wire is, to our best knowledge, related
to VCC or GND. It is also worth mentioning that the controller
of Target 2 is located under the flash memory dies. Therefore the
distance between the EM probe and the controller of this target is
larger than Target 1 or Target 3. The fault observing procedure was
repeated with EM pulses at a higher voltage, however the result
were the same as shown in Figure 4b. The hot spot of Target 3
matches the location of the controller, however the glitching rate
is much lower (less than 10 %), compared to Target 1 (around 30 %),
for the best location.

Subsequently, the optimal glitching parameters for each target
chip were determined. Different voltages and lengths of the EM
pulse were tried at the most susceptible location of each chip (Lo-
cation x=6, y=4 for Target 1, Location x=10, y=0 for Target 2, and
Location x=10, y=1 for Target 3, as shown in Figure4). The pulse
voltages and lengths were selected between 150V and 250V, and
between 40ns and 1000ns, respectively. The parameters were ran-
domly selected while repeating the operation for 1500 times. We
observed that Target 2 and 3 are more susceptible to crashing if the
voltage exceeded 200V. However, the length of the pulse did not
seem to affect the result. The results were uniformly distributed
regardless of the length of the pulse. Therefore, we chose the glitch-
ing parameters as shown in Table 2. The X, Y, Z position values are
based on our XYZ table setup.

5.3 Firmware Reverse Engineering

In order to gain better insight into the RPMB authentication imple-
mentation, we reverse engineered the firmware from Target 1. All
available memory areas were dumped from the chip, including the
boot ROM and main ROM code, using the aforementioned vendor
commands.

The address of the reset handler was the start of our reverse engi-
neering effort, then the location of the command handler loop was
determined. The firmware uses a vector table located in SRAM, or
RAM segment in case of Target 2, for all standard eMMC commands.

Fault Modeling. Commands CMD24 (WRITE_BLOCK) and CMD25
(WRITE_MULTIPLE_BLOCK) are handled by the same function
and implements all RPMB functionality. This function was further
analyzed in order to understand how RPMB key authentication
could be circumvented using fault injection.

Listing 2 is the decompiler output for the routine that checks the
HMAC of an RPMB write request.

1 uint32_t rpmb_check_hmac(void *hmac,uint32_t
— length) {

2 uint32_t i = 0;

3

4 if (length + 3 >> 2 = 0) {

5 do {

6 if (x(int *)((int)hmac + i * 4) != x(int
— *)(CORRECT_HMAC + i * 4 + 0x60)) {

7 return 0;

8 }

9 =i+ 1

10 } while (i < length + 3 >> 2);

11 }

12 return 1;

13 }

Listing 2: Routine that checks the RPMB HMAC

150

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI

The routine checks the HMAC from the eMMC packet against
a pre-calculated HMAC stored in a hardware register, four bytes
at a time. It returns 1 if the HMAC is valid, otherwise it returns 0.
This routine was also implemented in Target 3. The following fault
injection possibilities were observed:

(1) If the length argument is set to 0 the check is skipped in its
entirety

(2) If the register r0 is set to any non-zero value, the ROM as-
sumes the HMAC was valid

(3) If we skip the call to rpmb_check_hmac entirely, the veri-
fication will succeed, because r0 contains a pointer to the
provided HMAC (non-zero value)

6 GLITCHING RPMB AUTHENTICATION
6.1 Glitching Setup

Based on the results presented in Section 5.2, we hypothesized
that it should be possible to skip the RPMB HMAC authentication
routine using EMFIL. When writing data to the RPMB, a JEDEC-
defined data packet needs to be sent to the target chip. The data
packet is 512-bytes long, and should contain the data to be written,
Nonce, the write counter, address, block count, request message,
and an HMAC calculated over this data [18]. Upon receiving the
data packet, the controller in the eMMC calculates the HMAC
using the previously programmed key. If the HMAC matches the
received one, the controller starts the data writing operation. The
command sequence of the RPMB write routine is shown in Figure
6a. Commands and data in white boxes are sent from the host to
the target. Orange boxes indicate responses from the target. RPMB
authentication is most likely performed during the time indicated
by the red box, thus the timing for performing the fault injecting
attack is critical.

In order to precisely identify the attack timing window, the EM
radiation emitted from the controller was measured at the moment
when the RPMB data packet was sent to the target. Figure 6b shows
the captured waveform. The captured timing matches the timing
window indicated by the red box in Figure 6a. DATO line is shown
in magenta, CLK line in green, and EM emission in blue. As shown
in the figure, during and after the data is sent to the target, the
controller keeps performing internal operations. The CRC status of
the sent data (positive = “010”) is sent on the DATO line from the
controller, synchronized with the CLK signal, as defined by JEDEC
Standard [18]. This operation is followed by DATO line pulled low,
which signals that the target device is busy performing the internal
computations. Even after the DATO goes back to high, the operation
continues on the controller. Since no other commands are issued to
the target, we made an assumption that the HMAC verification is
most likely performed during this timeframe, and that the observed
EM emission comes from the controller processing the RPMB data
and performing the HMAC computation.

After sending the RPMB result request, the host can request read-
ing the result register value, which is initiated by a read command
(CMD23 (SET_BLOCK_COUNT) and CMD18(READ_MULTIPLE _
BLOCK), shown in Figure 6a). Table 3 shows the list of the result reg-
ister values defined by JEDEC [18]. Whilst more values are defined,
only the relevant values in this setup are listed in Table 3.

151

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

 cMD23&25)
cmp {_cmD23825 { cmp23z2s } CMD23818
Write data | [CRC status + RPMB Result |
DATO + HMAC Busy signal Request {(Resur}

(a) RPMB write command sequence

DATO

CRC OK
(0b010)
o e

© A Write Data
Complete

CLK

(b) Waveforms when data with wrong HMAC were sent to the target.
The timing matches the timing window shown in red in Figure 6a

Figure 6: RPMB write command scheme and captured EM
emissions

Table 3: Partial list of RPMB operation result register values

Value Results

0x00 Operation OK

0x01 | General failure (Multiple errors have occurred)
0x02 Authentication failure (HMAC mismatch)
0x03 Counter failure

0x04 Address failure

The returned register values were monitored to determine if the
fault was successfully injected into the RPMB authentication proce-
dure. If the returned value was 0x02, the target was determined to
be responding normally. Because we intentionally sent an incorrect
HMAC value, this is the expected result. If the target responded
with value 0x00, the attack had successfully skipped the authen-
tication procedure. If any other value was returned, then it was
determined that an error occurred during the RPMB authentication
procedure. If all of the responses were 0x00 or 0xff, the target was
presumed to have crashed, since a hard reset is required to bring
the chip back to a normal working state.

The setup described in Section 4.3 was reused, however the Rasp-
berry Pi Pico was reprogrammed to communicate with the RPMB
on the target eMMC. The JEDEC eMMC Electrical Standard [18]
was followed to send the required command sequence. First, the
RPMB was programmed with an arbitrary key. Then the first block
of the RPMB (256 bytes) was programmed with random values.
Subsequently the RPMB write routine was repeated with the wrong
HMAC value and the EM pulse was introduced during the above
mentioned timing window. After completing the write operation
and waiting for the busy signal to be cleared, the RPMB result

WiSec '24, May 27-30, 2024, Seoul, Republic of Korea

Aya Fukami and Richard Buurke

@ Glitch

OXFFFF {

0x0004 |

0x0003 4 |

— [

Resister Value

0x0002 ; {

0x0001

—

0x0000 I i

11000 11200 11400

11600 11800 12000

Delay [x10ns]
(a) Target 1

@ Glitch

OXFFFF -

0x0003-| |

0x0002 | |

Resister Value

0x0001

0x0000- | @ I

T T
11000 11200

T
11400

T T T
11600 11800 12000

Delay [x10ns]
(b) Target 3
Figure 7: Returned result register value after RPMB authentication glitching

request was sent to the target, followed by the result reading com-
mand. The 200V EM pulse with a length of 100ns was injected
at 10ns granularity during the target timing window. The trigger
signal was generated when the last bit of the data packet was sent.
The time-frame between the trigger and the end of the busy signal
is around 119us for Target 1, and 113us for Target 3. The procedure
was repeated until the target responded with the "Operation OK"
register value, and the correct response. Additionally, in case the
system data got corrupted, vendor-specific commands were imple-
mented in the PIO state machine of the Raspberry Pi Pico, which
enabled us to restore the system data.

6.2 Results

The glitching campaign targeting RPMB authentication was exe-
cuted exclusively on Target 1 and 3. During the profiling campaign,
Target 2 became non-responsive, resulting in the unavailability of
samples for analysis. Figure 7a shows the returned result register
values over time on Target 1. The x-axis shows the timing where
the EM pulse was injected, and the y-axis shows the actual returned
value of the result register. The timing is shown as a delay since the
last bit of write data was sent to the target. Responses with 0xFFFF

152

and 0x0000 occur mostly when the target has crashed. Register val-
ues 0x01, 0x03 and 0x04 are returned multiple times by introducing
the EM pulse. The assumption is that the internal operations were
corrupted through EMFI, while the rest of the RPMB routine con-
tinued executing on the controller. Additionally, the write counter
value was also overwritten with an unexpected value several times
on Target 1, because it is stored in SRAM. We had to restore this
value by using vendor-specific commands before continuing the
glitching campaign. Nevertheless, the RPMB authentication was
successfully bypassed at the timing shown as red dots in Figure 7a.

After successfully glitching Target 1, we repeated the same pro-
cedure on Target 3 by using the parameters defined in Table 2.
Figure 7b shows the returned result register value. Similar to what
was observed on Target 1, 0x01, or “General failure” was often
observed at the early stage of the RPMB authentication. At the
same time, Target 3 crashed more often than Target 1, where the
response packet was filled with OxFFFF. Nevertheless, the RPMB
authentication was successfully bypassed when the EM pulse was
injected around 112us, as shown in Figure 7b. Unlike Target 1, no
data corruption was observed during the glitching campaign on
Target 3.

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI

The critical timing moment is from 117.72us to 118.30us for
Target 1, and from 112.3us to 112.50us for Target 3 since the trigger
(after the last bit of the data packet was sent from the PIO), where
allegedly one of the scenarios suggested in Section 5.3 was executed.
On both targets, those timings are around the end of the busy signal
indicated on the DATO line. After successful glitching, the counter
value was incremented by one on both targets, which means that the
controller acted as if the correct HMAC was received and proceeded
with writing the received value. Post reading of the RPMB value
confirmed that the sent data was successfully stored. Therefore
we concluded that the RPMB authentication can be successfully
skipped through EMFI if it is performed at the correct timing.

6.3 Integrity of Non-Volatile Data

Since the critical timing to skip the RPMB authentication check is
identified, we repeated the experiment with a new chip. Prior to the
experiment, arbitrary data is written into the user data area. Before
starting the glitching campaign, all physical data was dumped and
hashed using SHA-256. Figure 8 shows the mounting of an eMMC
on a custom-made eMMC-SD adapter. The adapter was connected
to a PC using an SD-card slot. The data is imaged using the dd
command on a Linux operating system (OS).

«

Figure 8: Target device mounted on an SD-eMMC Adaptor

After completing the non-volatile data extraction, the target chip
was mounted on the glitching setup, and the EM pulse was injected
only at the critical timing of the RPMB authentication, identified
above. Both on Target 1 and 3, bypassing the RPMB authentication
was successful in less than 10 tries. After successfully bypassing the
RPMB authentication, the user data area was again extracted. The
SHA-256 hash value of the extracted data successfully matched the
value computed before the glitching attack. Additionally, the RPMB
data was only overwritten at the specified block address, keeping
the remaining block data unchanged. Therefore we conclude that
EMFI attacks against RPMB authentication can be conducted, while
preserving integrity of the stored data, by introducing pulses using
predetermined parameters, including the timing.

It must be noted, however, that repeatedly sending EM pulses to
the same device does seem to increase the chance of data corruption
in the user data area of the eMMC. We repeated the glitching cam-
paign on Target 1 and Target 3 for additional 100 consecutive times
using our setup. We observed multiple data corruptions in the user
data area of both targets, while the RPMB area did not seem to be
affected. Any corruptions could easily be reverted using the write
command to the affected data sectors. However this observation
emphasizes the importance of creating a data backup beforehand,
and checking the integrity of the data after a successful glitching
attempt.

153

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

7 DISCUSSION
7.1 Arbitrary Code Execution

It is possible to run our own fault observer code on the target
during the characterization phase due to vendor-specific commands
provided by the manufacturer. Although convenient, this is not a
requirement for device characterization. The response from the
eMMC controller, after requesting the result for an RPMB write
request, includes a result register [18], as noted in Table 3 in Section
6.1. This register indicates which operation failed while processing
the request (e.g. HMAC mismatch, expired write counter, etc.). It
was observed that applying EMFI to the target while it processes an
RPMB write request, changes this value. Therefore other methods
can be used for characterization, that do not rely on arbitrary code
execution.

7.2 Timing
Our initial setup relied on the Linux kernel eMMC driver for commu-
nication with the target device. However, the scheduling properties
of a non real-time operating system, makes it unsuitable for FI
purposes. Using the Linux kernel driver also lacks the required
fine-grained control needed for communication. The kernel dri-
ver periodically sends commands, that are not controlled by the
user, to check the status of the device. Therefore programmable
input/output (PIO) on the Raspberry Pi Pico was used instead. A
benefit of this approach is that the timing can be precisely con-
trolled. However, this also means that a deep understanding of the
eMMC protocol is required to correctly implement the PIO state
machines, for communication with the target device.

Although various open source implementations are available
[12, 36], they eventually did not meet the requirements for this
experiment, and therefore a custom implementation was used.

7.3 Data Corruption

By sending high-voltage EM pulses to the target device, we observed
both user data and system data corruption. Especially through pro-
filing, where EM pulses are shot directly on the flash memory
dies, some sectors became unresponsive. In some cases, the tar-
get eMMC became completely unresponsive, preventing further
analysis. These results show that repeating EM pulses are highly
destructive on eMMCs. Therefore it is important to perform the
profiling using a reference device to identify the correct timing and
location. Furthermore, creating a backup of the stored data before
executing the EMFI attack is highly recommended.

7.4 Real World Applications

Even though use of the RPMB, to the best of our knowledge, has
only seen limited applications in smartphones (e.g. storing an anti-
rollback counter [14]), use of this type of storage seems to be em-
braced by the automotive industry. For example, U-Boot is a popular
bootloader used in embedded devices, and stores anti-rollback coun-
ters and the bootloader lock state in the RPMB [31], when Android
Verified Boot (AVB) is configured to use OP-TEE.

According to NXP, their LMX family of processors is used by
most large car manufacturers [11]. NXP also supports Android Au-
tomotive, that uses Trusty as the operating system of choice to run

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

in the TEE [24]. According to the i. MX Android Security User’s Guide
from NXP [9], the RPMB is used to store anti-rollback counters,
bootloader lock state and AVB public key, which is used for verify-
ing integrity of system images. The RPMB key itself is encrypted
and decrypted in the TEE by Trusty. The Digi ConnectCore 8X
system-on-module (SOM), which is designed around the NXP LMX
8X processor, and uses eMMC storage, also stores the AVB public
key in the RPMB [13].

It therefore seems that the RPMB is used as a critical component
in the secure boot implementation of a wide variety of automotive
products. Compromising the RPMB means that an attacker will be
able to rollback potentially vulnerable versions of software, unlock
the bootloader or re-sign system images. Resulting in the attacker
gaining root privileges in the Android operating system.

Whilst an eMMC chip does provide tamper resistant storage
in the form of an RPMB, any mitigations against fault injection
have not been encountered during our experiments. Furthermore,
the total cost of re-creating our FI setup is less than USD$7.000,
meaning that applying EMFI is in reach for most attackers.

7.5 Mitigations

As discussed in Section 5, publicly known vendor-specific com-
mands were used to achieve code execution on all devices, and run
our fault observer routine. In the case of Target 1 and 3, this already
breaks the security of the RPMB, since the firmware can be patched.
The firmware of Target 2 was not fully reversed.

Applying EMFI on an eMMC chip requires physical access to
the device. Depending on the threat model being used, this might
be a valid concern. One way to increase the difficulty of successful
FI attacks is to implement mitigations in software as described by
van Woudenberg and O’Flynn [32] (e.g. double checking critical
data, using non-trivial constants). As mentioned in Section 5.3, the
implemented HMAC validation routine shown in Listing 2 only
fails when returning 0. This requirement is trivial to achieve since
the CPU register holding the return value (r0) holds a pointer to the
HMAC, and thus is non-zero before the function is called. Requiring
a return value with a large Hamming distance (i.e. 0xA5C3B4D2)
significantly increases the attack complexity. A large number of bit
flips is needed to end up with the correct return value.

Validation of the HMAC is critical, if circumvented the integrity
of the RPMB is fully compromised. Therefore the HMAC should be
checked multiple times. Preferably a random delay should be added
between both checks. This requires the attacker to insert multiple
glitches with a non-constant delay in between.

The implemented routine is also vulnerable to a timing attack.
The function returns as soon as the comparison fails. A possible
mitigation would be to always check the entire HMAC, ensuring
that the comparison uses constant time.

Hardware mitigations against fault injections attack could also
be considered. For example, Jiang et al. showed, using a simulated
model, how machine learning can be applied to detect voltage
glitching attacks in low power circuits [20]. Ruminot et al. pro-
posed adding a potentiometer, with a random resistance whenever
the device is started, coupled with a capacitor, in order to mitigate
the effect of voltage glitching attacks [27]. The authors suggest inte-
grating this circuit within the same package as the microcontroller.

154

Aya Fukami and Richard Buurke

7.6 Future Work

This research focused on attacking the RPMB embedded in eMMC
devices. However succeeding technologies, such as UFS and NVMe,
also include an RPMB implementation. UFS is the storage solution
of choice for the current generation of smartphones making it an
interesting subject for future research.

As described in Section 2, by compromising the integrity of
the RPMB data, an attacker could take over the target system. Ex-
panding this research into a consumer device, such as automotive
devices, represents a promising avenue for further exploration.

8 RESPONSIBLE DISCLOSURE AND
RESOURCES

We have reported our findings to the manufacturer of the target
devices, and our report was received by the manufacturer on 11 Feb-
ruary, 2024. They thoroughly investigated the issue and identified
multiple vulnerabilities. At the time of this publication, the manu-
facturer is developing a patch for this matter, and we are obligated
not to disclose any manufacturer-related information until 25 Sep-
tember, 2024. Meanwhile, our PIO code for Raspberry Pi Pico, fault
injection code, and the custom PCB design file, and other related re-
sources are available at https://github.com/topig/RPMB_Glit
ching.

9 CONCLUSION

We have shown that it is possible to circumvent the RPMB au-
thentication scheme and write arbitrary data, by applying EMFI
on eMMCs from a major manufacturer. The RPMB functionality
of non-volatile storage devices is often considered to store data
that requires to be immutable to the user. The potential for by-
passing RPMB authentication and manipulating its data raises con-
cerns regarding the integrity of security mechanisms, including
anti-rollback protection, bootloader lock state, and signature ver-
ification. Widely available, off-the-shelf commercial components
were used for these experiments. The total cost of the equipment,
needed to re-create the setup, is less than USD$7.000, which makes
it a feasible option for most attackers.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
time and the insightful reviews. The authors would also like to
thank Ronald van der Knijff and Zeno Geradts for supervising this
research, Nils Wiersma for his technical support and sharing his
software, Erik van Dijk for manufacturing the fixture for the XYZ
table, Martien de Jongh for providing us the eMMC adapter, and
Susan Laraghy for initial proof-reading and revising the article.

Keyless Entry: Breaking and Entering eMMC RPMB with EMFI WiSec *24, May 27-30, 2024, Seoul, Republic of Korea

REFERENCES [20

Wei Jiang et al. 2022. Machine Learning Methods to Detect Voltage Glitch Attacks

(1]
(2]

(3]

2024. Android Verified Boot 2.0. https://android.googlesource.com/platform/
external/avb/+/main/README.md [Online; accessed 1. Apr. 2024].

2024. Trust Issues: Exploiting TrustZone TEEs. https://googleprojectzero.
blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html [Online; ac-
cessed 29. Mar. 2024].

2024. Verifying Boot. https://source.android.com/docs/security/features/
verifiedboot/verified-boot#rollback-protection [Online; accessed 29. Mar. 2024].
Arm. 2021. ARMv7-M Architecture Reference Manual. Arm (Dec. 2021).
https://developer.arm.com/documentation/ddi0403/latest

Arm. 2021. Trusted Board Boot Requirements Client (TBBR-CLIENT) Armv8-A.
Arm (Dec. 2021). https://developer.arm.com/documentation/den0006/latest
Oran Avraham. 2018. eMMC hacking, or: how I fixed long-dead Galaxy S3
phones. https://media.ccc.de/v/34c3-8784-emmc_hacking_or_how_i_fixed_
long-dead_galaxy s3_phones [Online; accessed 23. Jan. 2024].

Yaacov Belenky, Ira Dushar, Valery Teper, Hennadii Chernyshchyk, Leonid Azriel,
and Yury Kreimer. 2021. First Full-Fledged Side Channel Attack on HMAC-SHA-2.
31-52. https://doi.org/10.1007/978-3-030-89915-8_2

Claudio Bozzato, Riccardo Focardi, Francesco Palmarini, et al. 2019. Shaping the
glitch: optimizing voltage fault injection attacks. IACR transactions on crypto-
graphic hardware and embedded systems 2019, 2 (2019), 199-224.

NXP B.V. 2020. iMX Android™ Security User’s Guide. https:
//community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-
processors/167888/2/i.MX_Android_Security_User’s_Guide.pdf
accessed 5. Feb. 2024].

[Online;

on IoT/IloT Infrastructures. Computational Intelligence and Neuroscience 2022
(2022).

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361-372.

mhei. 2024. mmc-utils. https://github.com/mhei/mmc-utils [Online; accessed
23. Jan. 2024].

Ryan P Nakamoto. 2016. Secure boot and image authentication. Qualcomm
Technologies Inc., San Diego (2016).

NXP. 2024. Android Automotive for i.MX Applications Processors.
https://www.nxp.com/design/design-center/software/embedded-software/i-
mx-software/android-automotive- os-for-i-mx-applications-processors:
ANDROID-AUTO [Online; accessed 5. Feb. 2024].

oranav. 2024. i9300_emmc_toolbox. https://github.com/oranav/i9300_emmc_
toolbox [Online; accessed 23. Jan. 2024].

Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey:
Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-
core Frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (London, United Kingdom) (CCS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 195-209. https:
//doi.org/10.1145/3319535.3354201

Nicolas Ruminot, Claudio Estevez, and Samuel Montejo-Sanchez. 2023. A Novel
Approach of a Low-Cost Voltage Fault Injection Method for Resource-Constrained
IoT Devices: Design and Analysis. Sensors 23, 16 (2023), 7180.

[10] Liang Cai. 2019. Guard Your Data With the Qualcomm Snapdragon Mobile : . i R 4 .
Platform. https://www.qualcomm.com/content/dam/qcomm-martech/dm-] Xhani Marvin Saf3, Richard Mitev, Ahmad-Reza Sadeghi, and Voltage Fault Injec-
assets/documents/guard_your_data_with_the_gualcomm_snapdragon tion VFL 2023. Oops..! I Glitched It Again! How to Multi-Glitch the Glitching-
mobile_platform2.pdf [O_nline'_acces_sed 4._Feb._2024]. - - Protections on ARM TrustZone-M. arXiv preprint arXiv:2302.06932 (2023).

[11] Carl Chien. 2017. LMX in automotive. https://www.nxp.com/docs/en/supporting-] Carlton Shegherc!, Konstar'ltlnos Markantonakls, Nico van Hel]nlngen, Driss
information/BL-Micro-i.MX-in- Automotive- Carl-Chien.pdf [Online; accessed 5. Aboglkasmml,'c'lem'ent Gamf:, Thibaut Heckmann, and]?avxd Naccache. 2021,
Feb. 2024]. Physical fault injection and side-channel attacks on mobile devices: A compre-

[12] democloid. 2024. pico-sdio-example. https://github.com/democloid/pico-sdio- hensive analysis. Computers & Security 111 (2021), 102471. https://doi.org/10.
example [Online; accessed 4. Feb. 2024]. 101(6‘/].cose2021:102471

[13] Digi International Inc. 2024. Secure boot flow | ConnectCore 8X.] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017. CLKSCREW:
https://www.digi.com/resources/documentation/digidocs/embedded/android/ Expos'mg the Peljﬂs ofSecurlty—Obh.Vlous Energy Manage'mént. In 26th USENIX
deall/cc8x/android-trustfence_r_secure-boot-flow [Online; accessed 2. Feb. Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC,
2024]. - 1057-1074. https://www.usenix.org/conference/usenixsecurity17/technical-

[14] Aya Fukami, Richard Buurke, and Zeno Geradts. 2024. Exploiting RPMB authenti- sessions/presentation/tang . . .
cation in a closed source TEE implementation. Cryptology ePrint Archive, Paper] The U-Boot developme'nt community. ,2021' Android Verified Boot 2.0 — Das
2024/180. hitps://doi.org/10.1016/}.£sidi.2023.301682 [Online; accessed 9. Feb. U-Boot unknown version documentation. https://docs.u-boot.org/en/v2021.
2024]. 04/android/avb2.html?highlight=rpmb#avb- using- op- tee-optional [Online; ac-

[15] Aakash Gangolli, Qusay H. Mahmoud, and Akramul Azim. 2022. A System- cessed 4. Feb. 2024]. o .
atic Review of Fault Injection Attacks on IoT Systems. Electronics 11, 13 (2022). 1 Jasper van Woudenberg and Colin O Fly'nnA 2022. The Hardware Hacking Hand—
https://doi.org/10.3390/electronics11132023 book (1 ed.). No starch press, San Francisco, CA, Chapter Chapter 14: Think of

[16] Dennis Giese and Guevara Noubir. 2021. Amazon echo dot or the reverberating th? Children: Countermeast{res, Certlﬁcatlor}s and Goodbytes.
secrets of [oT devices. In Proceedings of the 14th ACM Conference on Security and] Vincent Werner, Laurent Maingault, and Marie-Laure Potet. 2023. An end-to-end
Privacy in Wireless and Mobile Networks. 13-24. approach to identify and exploit multi-fault injection vulnerabilities on micro-

[17] NewAE Technology Inc. 2020. ChipSHOUTER Kit. https://www.newae.com/ controllers. journal of Cryptographic Engineering 13, 2 (2023), 149-165.
products/nae-cw520 [Online; accessed 6. Feb. 2024].] Western Digital. 2020. Replay Protected Memory Block (RPMB) - Protocol Vulnera-

[18] JEDEC Solid State Technology Association. 2015. Embedded Multi-Media Card bilities. White Paper.

[19

(e-MMC) Electrical Standard (5.1). JEDEC Standard JESD84-B51. https://www.
jedec.org/system/files/docs/JESD84-B51.pdf

Kitae Jeong, Yuseop Lee, Jaechul Sung, and Seokhie Hong. 2013. Security analysis
of HMAC/NMAC by using fault injection. Journal of Applied Mathematics 2013
(01 2013). https://doi.org/10.1155/2013/101907

Z3X-Team. 2024. EASY-JTAG PLUS ACTIVATION. https://z3x-team.com/
products/easy-jtag-plus-activation/ [Online; accessed 5. Feb. 2024].

Zuluscsi. 2024. ZuluSCSI-firmware. https://github.com/ZuluSCSI/ZuluSCSI-
firmware/blob/main/lib/ZuluSCSI_platform_RP2040/sdio_RP2040.pio [Online;
accessed 4. Feb. 2024].

https://android.googlesource.com/platform/external/avb/+/main/README.md
https://android.googlesource.com/platform/external/avb/+/main/README.md
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://source.android.com/docs/security/features/verifiedboot/verified-boot#rollback-protection
https://source.android.com/docs/security/features/verifiedboot/verified-boot#rollback-protection
https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/documentation/den0006/latest
https://media.ccc.de/v/34c3-8784-emmc_hacking_or_how_i_fixed_long-dead_galaxy_s3_phones
https://media.ccc.de/v/34c3-8784-emmc_hacking_or_how_i_fixed_long-dead_galaxy_s3_phones
https://doi.org/10.1007/978-3-030-89915-8_2
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-processors/167888/2/i.MX_Android_Security_User's_Guide.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-processors/167888/2/i.MX_Android_Security_User's_Guide.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-processors/167888/2/i.MX_Android_Security_User's_Guide.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.nxp.com/docs/en/supporting-information/BL-Micro-i.MX-in-Automotive-Carl-Chien.pdf
https://www.nxp.com/docs/en/supporting-information/BL-Micro-i.MX-in-Automotive-Carl-Chien.pdf
https://github.com/democloid/pico-sdio-example
https://github.com/democloid/pico-sdio-example
https://www.digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/android-trustfence_r_secure-boot-flow
https://www.digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/android-trustfence_r_secure-boot-flow
https://doi.org/10.1016/j.fsidi.2023.301682
https://doi.org/10.3390/electronics11132023
https://www.newae.com/products/nae-cw520
https://www.newae.com/products/nae-cw520
https://www.jedec.org/system/files/docs/JESD84-B51.pdf
https://www.jedec.org/system/files/docs/JESD84-B51.pdf
https://doi.org/10.1155/2013/101907
https://github.com/mhei/mmc-utils
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-automotive-os-for-i-mx-applications-processors:ANDROID-AUTO
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-automotive-os-for-i-mx-applications-processors:ANDROID-AUTO
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-automotive-os-for-i-mx-applications-processors:ANDROID-AUTO
https://github.com/oranav/i9300_emmc_toolbox
https://github.com/oranav/i9300_emmc_toolbox
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1016/j.cose.2021.102471
https://doi.org/10.1016/j.cose.2021.102471
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://docs.u-boot.org/en/v2021.04/android/avb2.html?highlight=rpmb#avb-using-op-tee-optional
https://docs.u-boot.org/en/v2021.04/android/avb2.html?highlight=rpmb#avb-using-op-tee-optional
https://z3x-team.com/products/easy-jtag-plus-activation/
https://z3x-team.com/products/easy-jtag-plus-activation/
https://github.com/ZuluSCSI/ZuluSCSI-firmware/blob/main/lib/ZuluSCSI_platform_RP2040/sdio_RP2040.pio
https://github.com/ZuluSCSI/ZuluSCSI-firmware/blob/main/lib/ZuluSCSI_platform_RP2040/sdio_RP2040.pio

	Abstract
	1 Introduction
	2 Threat Model
	3 Related Work
	4 Experiment Setup
	4.1 Electromagnetic Fault Injection
	4.2 Target Selection
	4.3 Glitching Setup

	5 Characterization
	5.1 Device Identification
	5.2 Profiling
	5.3 Firmware Reverse Engineering

	6 Glitching RPMB Authentication
	6.1 Glitching Setup
	6.2 Results
	6.3 Integrity of Non-Volatile Data

	7 Discussion
	7.1 Arbitrary Code Execution
	7.2 Timing
	7.3 Data Corruption
	7.4 Real World Applications
	7.5 Mitigations
	7.6 Future Work

	8 Responsible Disclosure and resources
	9 Conclusion
	Acknowledgments
	References

