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ABSTRACT

The Android system protects its users’ privacy via app permissions,

which govern apps’ access to sensitive data and resources. However,

recent research has reported that, during app virtualization, the cur-

rent Android permission model fails to prevent illegal permission

usage: apps can exploit the User ID shared among co-hosted apps

in the same virtualized environment to perform unauthorized ac-

tions. To the best of our knowledge, such over-privilege issues have

not been thoroughly investigated; neither has a practical defense

proposed to address them.

To �ll those gaps, this paper introduces a taxonomy of over-

privilege issues in the context of app virtualization and presents

an automated tool called PermLabel to investigate their preva-

lence and impact in real-world apps. By testing 826 real-world apps,

PermLabel identi�ed 254 (31%) as having over-privilege issues.

Among the found apps, 244 (96%) have at least one over-privileged

runtime permission, which poses a substantial risk to user privacy.

Our analysis of these identi�ed cases uncovered common causes

and abuses of over-privileged permissions. Notably, the majority

of such permissions grant access to sensitive data such as location,

camera, and phone state. These issues predominantly stem from the

app’s code and third-party libraries intended for advertising and an-

alytics. To restore compliance with the Android permission model,

we also propose a defense solution, PermSep, that enforces �ne-

grained permission separation among co-hosted apps while pre-

serving normal app-virtualization usage. Evaluation of PermSep on

17 virtualization apps shows successful blocking of over-privilege,

achieving desired properties not attainable by previous work.
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1 INTRODUCTION

In 2022, the Android system had more than 2.5 billion users [8].

However, the current Android system only supports running one

instance of a given app at a time, so users frequently need to log

in and out to switch between di�erent accounts, or use multiple

mobile devices across various work and leisure scenarios. A recent

solution known as app virtualization addresses the limitation and

allows users to runmultiple instances of the same app on one device

simultaneously. App-virtualization platforms rely on a host app to

provide a virtualized environment to execute plugin apps. Users

can download apps from various app markets and run them as

plugins in the host app without modi�cation. These host apps aim

to support the execution of Android apps seamlessly and preserve

their functionality. The most popular host apps, Dual Space [10]

and Parallel Space [22], have been widely used and downloaded

from Google Play more than 100 million times.

Over-privilege during App Virtualization. Android adopts

a permission-based security model, demanding that apps obtain

explicit permission to access system resources. Permissions must

be declared during installation, with runtime consent requested

for potentially dangerous permissions. To enforce this model, An-

droid assigns a unique User ID (UID) to each installed app and

manages a list of permissions for each UID. However, recent re-

search [9, 25, 31, 13] highlights a signi�cant security challenge in

app-virtualization environments. In such settings, popular host app

implementations share the same UID with plugin apps, rendering

Android’s UID-based permission model unable to di�erentiate be-

tween the permissions of the plugin and host apps. This results in

the over-privilege problem, where permissions granted to an app—be

it a plugin or host app—can be exploited by all cohabitating apps in

the virtualization environment. An app is deemed over-privileged

if it can perform permission-required operations without declaring

or requesting the permissions. Notably, by not declaring permis-

sions, the app evades permission-based security vetting [11, 14] and

malware detection [4, 29]. By not requesting permissions, the app

further sidesteps user consent. Consequently, over-privileged apps

can stealthily access restricted data, such as monitoring the user’s

location and recording audio, thereby greatly invading user privacy.

Therefore, there is an urgent need to investigate the over-privilege

problem in real-world apps and develop a defense solution to ad-

dress the security challenge in the app-virtualization environment.
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Limitations of prior investigation and defense. Several re-

cent studies [9, 13, 25, 31] touched upon the over-privilege problem.

However, these studies were either con�ned to proof-of-concept

examples or lacked comprehensive coverage of all potential types

of over-privilege. For instance, PluginPermCheck [13] identi�ed

cases of plugin apps exploiting undeclared permissions but did not

consider permissions requested at runtime. Other than investiga-

tion, some studies have proposed defenses to prevent the problem

of overprivilege. However, they often struggled to strike a balance

between security and functionality. For example, some defense

approaches focused on detecting malicious host or plugin apps

through behavioral monitoring [26] or analyzing mismatched cer-

ti�cates [31]. Unfortunately, they overlook scenarios where benign

host and plugin apps inadvertently contribute to over-privilege

issues. Other defense approaches aimed to protect benign plugin

apps by enabling them to identify whether they operate within

app-virtualization environments; if detected, these apps halt execu-

tion [9, 19]. However, this hinders the use of benign apps, undermin-

ing the intended functionality. Projects like Boxify [6] and NJAS [7]

leveraged app virtualization to build a sandboxed environment to

isolate rogue apps. They employed a proxy-based approach and

relied on a user-level runtime to proxy interactions between the

sandboxed app and the operating system. These works did not aim

to address over-privilege. To address the issue, they could poten-

tially be extended to ensure that a plugin app’s access to resources

aligns with the required permission. However, these approaches

require high engineering e�orts to interpose apps’ resource ac-

cesses and customize permission models. They cannot easily scale

to support di�erent stock Android apps using various API versions

with di�erent permission requirements.

Our Work. Our goal is to thoroughly investigate and address

the over-privilege problem in real Android apps. We aim to ad-

dress the following research questions: RQ1: How prevalent are

over-privilege issues in real-world apps? RQ2: What are the code’s

origins leading to these over-privilege issues?RQ3: What behaviors

ensued from the over-privileged permissions? RQ4: What are over-

privileged permissions’ practical consequences and root causes? To

answer these questions, we presented a taxonomy of over-privilege

issues, considering the misalignment among declared, requested,

and required permissions from both host and plugin apps’ per-

spectives. Then, we developed an automated tool for detecting the

de�ned issues. When testing 630 popular apps from di�erent app

stores and 196 malware samples, we found that 194 (31%) apps

and 60 (31%) malware samples have over-privilege issues. Nearly

all of them have at least one over-privileged runtime (dangerous)

permission, signifying signi�cant risks to user privacy (RQ1). The

over-privilege issues stem from both the application’s code and var-

ious libraries. Additionally, over-privileged libraries present more

signi�cant privacy threats in virtualization environments due to

their broader permissions and the potential for stealthy abuse (RQ2).

The most common over-privileged permissions are for accessing

device location or retrieving phone state (RQ3). We also observed

some malware samples that potentially abuse over-privilege to en-

hance malicious operations, and apps’ third-party libraries are a

primary root cause of over-privilege problems (RQ4). These results

con�rm the risks of over-privilege during app virtualization.

Based on our �ndings, we introduced a defense solution, PermSep,

to support �ne-grained permission isolation. We aim to support

o�-the-shelf host apps instead of implementing a new host app, to

proxy plugin apps’ resource accesses to prevent over-privilege. The

latter limits portability and usability. PermSep extends the Android

framework to leverage its existing permission model and enforce-

ment mechanisms against plugin apps in an app-virtualization

environment. To ensure both security and functionality, PermSep

distinguishes the identity of plugin apps from host apps and aligns

the permission of plugin apps with corresponding native apps—

most host apps launch a plugin app by cloning from its native app.

In sum, this paper makes the following contributions:

• Comprehensive study on over-privilege risks. It presents the �rst

systematic evaluation of the over-privilege problem within the

app-virtualization environment, addressing risks overlooked by

previous research.

• New analysis tool. It develops PermLabel, an automated tool to

discover both over-privileged install-time and runtime permis-

sions in Android apps.

• Real-world evaluations. It uncovers common causes and abuses of

over-privileged permissions in real-world apps, con�rming their

prevalence and substantial privacy impact in the real world.

• Practical defense solution. It proposes PermSep, a defense solution

to prevent over-privilege by separating permission between the

host and plugin apps, which can be used with o�-the-shelf host

apps. The evaluation of PermSep prototype shows that it e�ec-

tively prevents over-privilege and achieves the desired properties

of ensuring accurate runtime permission context and the nor-

mal functionalities of both install-time and runtime permissions

lacking in the previous work.

2 BACKGROUND

2.1 Android Permission Model

The Android OS delegates resources based on User IDs (UIDs) and

enforces access control by checking the UID’s authority. Each An-

droid app obtains a unique UID upon installation, and by default,

only limited resources are granted to that UID. To extend access

beyond such restricted set of resources, apps should obtain spe-

ci�c permissions. Below, we describe the two primary types of

permissions and the prerequisites to obtain them.

Install-time vs. runtime permission. Since the release of An-

droid 6.0 (API 23), permission has been divided into install-time and

runtime permissions. Install-time permissions manage resources

that impinge less on user privacy, such as accessing the Internet,

retrieving Wi-Fi or Bluetooth statuses, and using extensions of

location providers. Runtime permissions, on the other hand, man-

age resources that are more privacy-sensitive, such as accessing

location data, recording audio, and accessing camera hardware.

Prerequisites to obtain permissions. Before using permis-

sions, apps should obtain permission �rst; otherwise, the system

will block that permission usage. To use install-time permissions,

app developers should declare them in the app manifest �le. Then,

the declared permissions are granted to the app automatically upon

installation. To use runtime permissions, on the other hand, de-

velopers should both declare them in the manifest �le and request

runtime user consent. In contrast to install-time permissions, the
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core purpose of requesting runtime consent is to clearly associate

permissions with context (e.g., the exact usage time and the app

name), and thus enable users to make informed decisions about

whether to grant permission. Google Play Console, a platform that

Google provides for app developers, emphasizes that permission

should only be used in alignment with the context the user has

consented to [12].

System Components that Handle Permissions. The Android

permission model relies on the Package Installer (PI) and Activ-

ity Manager Service (AMS) to handle permissions. We introduce

these system components brie�y to enhance comprehension of our

measurement tool and defense solution, which interact with them.

PI, a system application, handles permission requests and ren-

ders permission-request dialog boxes on the user interface. AMS

functions as a background system service responsible for validat-

ing a UID’s permission status. AMS operates in two distinct sce-

narios: permission enforcement and permission self-checking. Per-

mission enforcement occurs when a service (e.g., Location Man-

ager Service) validates the permission statuses of the caller be-

fore serving permission-required API calls. Conversely, permission

self-checking occurs when an app scrutinizes its own permission

statuses before executing a permission-required API call. In cases

where the corresponding permissions are not granted yet, the app

should request them before calling. Understanding these call paths

enables us to accurately identify required permissions, i.e., permis-

sions that the app must have in order to call speci�c APIs, as we

will explain in the following sections.

2.2 App Virtualization

App virtualization involves a host app and plugin apps. The

former creates an app-level sandbox-like environment in which

various plugin apps can execute.While the speci�c implementations

may di�er, we note four common features of commodity host apps,

presented below. This commonality may be attributed to the fact

that a considerable number of them [9] are built upon two open-

source frameworks, VirtualApp [5] and DroidPlugin [23].

Cloning native apps. Users can clone any app as a plugin app

without modifying those apps. To distinguish the same app between

the installed one (running on the Android OS) and the virtualized

one (running in the host app), we call the prior as the native app

and the latter as the plugin app.

Acting as a proxy. Because plugin apps are not installed on

the Android OS, they are conceptually invisible to the system. In

order to execute normally, these plugin apps rely on the host app to

proxy their requests to the intended Android systems services. As

Figure 1 illustrates, the requests made by plugin apps can be broadly

categorized into two types, depending on whether they are proxied

transparency or routed through a host-server process. The �rst

type ( 1 ) involves straightforward parameter modi�cations, while

the second type ( 2 ) needs to be dispatched to a host-server process

to customize both the sending and returning parts, e.g., launching

plugin apps. The second type introduces additional IPC calls and

an extra layer of indirection compared to the �rst type, which

complicates the identi�cation of the actual initiators. Understanding

the two request types and the extra layer of indirection in the second

Stub

Modules 

Android System

Stub

Modules 

Host Server Process

……Plugin App N Plugin App 1

UID =

u0_a3XX
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2 ..
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UID =

u0_a2XX 

App Virtualization IPC ProcessesClone

Native 

App 1

Native 

App N

Native apps could be 

running or not.

Figure 1: App virtualization vs. native apps.

type is essential for us to devise methods to correctly attribute

permission requests to the plugin apps.

Sharing UIDwith all plugin apps. The host app uses itself as a

placeholder to help the plugin app launch and instantiate processes.

Due to this mechanism, the plugin app is executed inside the process

initially assigned to the host app, therefore sharing the UID.

Overclaiming permissions.Android OS regards all permission

operations executed with this shared UID as emanating from the

host app. To support any plugin app the user may load in the future,

host apps typically declare as many permissions as possible. The

most popular host apps, Dual Space and Parallel Space, respectively

declared 102 and 94 system permissions in advance [31], which

cover almost all permissions on the system (e.g., Android 9 has 103

permissions). Many host apps also preemptively request runtime

permissions. For example, among the 17 host apps we tested, 14,

8, and 1 of them request Storage, Telephone, and Location at

launch, respectively.

2.3 Problem Description: Over-privilege

Ideally, only apps following Android’s permission requirements

should be allowed to access permission-required resources. How-

ever, due to host apps’ insecure practices of sharing UID and over-

claiming permissions during app virtualization, a host app may

obtain permissions that are not requested, and plugin apps may

obtain permissions that are not declared or not requested.

We aim to understand and address over-privilege risks during

app virtualization. In the context of app virtualization, an appli-

cation is deemed over-privileged when it can stealthily utilize extra

permissions while hosting or being hosted by other applications.

The term stealthily is employed to signify that the app neither ex-

plicitly declared these permissions in its manifest �le nor initiated

any permission-request dialog boxes, but opportunistically uses

permissions granted to apps habituating in the same virtualization

environment. Over-privileged apps can circumvent the existing

security mechanisms, such as app vetting by the app stores and

user consent through permission-request dialog boxes, as there are

no apparent disclosures or indications.

The exploitation of over-privilege poses severe consequences.

Malicious apps or third-party libraries can circumvent existing se-

curity mechanisms and covertly escalate privileges when operating

within virtualization environments. Even security-conscious app de-

velopers who diligently leverage the Android permission model to

limit third-party library access may �nd such protection ine�ective

when their apps are executed within virtualization environments.
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Assumptions. We assume the underlying operating system is

benign. We consider over-privilege by host apps and plugin apps,

which occurs either inadvertently or through malicious intent. To

categorize these cases, we present a taxonomy based on the type of

permission (install-time or runtime) and its authorization status (de-

clared and/or requested). The categories are summarized in Figure 2.

For ease of description, these categories are pre�xed by the app

type (host or plugin) when applicable. The green arrow represents

apps following Android’s permission requirements, while the red

arrow means the opposite. When apps run on the Android OS (case

(a) in Figure 2), they cannot use permissions in those red-arrow

cases. However, in an app-virtualization environment, there are

di�erent over-privileged categories that red-arrow cases can lead

to permission abuse (case (b) and (c) in Figure 2).

Host apps. We assume host apps provide typical app virtualiza-

tion functionalities but may sneak on using runtime permissions

that were initially declared for their hosted plugin apps. Over-

privilege occurs when the host app abuses permissions once they

have been granted to plugin apps by the system, which is catego-

rized as NR (“not requested”). The categories under “not declared”

are inapplicable to host apps because permissions can only be de-

clared during the installation of the host apps, and the permissions

speci�ed in the manifest �le of plugin apps have no impact. In con-

trast, host apps can leverage permissions requested by plugin apps

at runtime. We do not consider host apps maliciously exploiting the

app-virtualization functionalities to request permissions in disguise

of plugin apps, i.e., through injecting malicious payload into plugin

app processes.

Plugin apps. We consider four cases for plugin apps that can

lead to over-privilege of install-time and runtime permissions. If

a plugin app uses permission that the host app has declared but

itself does not, that install-time/runtime permission is classi�ed as

iND/rND (case (c) in Figure 2). If a plugin app does not request run-

time permission before use, that permission is classi�ed as NR. The

over-privilege occurs once the host app or co-hosted plugin apps in

the same app-virtualization environment already request the same

runtime permission and obtain consent with their permission con-

text. As stated earlier, the host apps we studied commonly request

Storage, Telephone, and Location permissions before any plugin

apps execute. If a plugin app neither declares nor requests runtime

permissions before use, the permission is categorized as rNDNR.

During app virtualization, a host or plugin app can utilize per-

mission self-checking APIs to check the permission statuses of

the shared UID. By doing so, apps can remain stealthy and avoid

triggering exceptions when attempting to abuse over-privileged

permissions that have not been granted.

3 INVESTIGATING OVER-PRIVILEGE DURING
APP VIRTUALIZATION

Having de�ned a comprehensive taxonomy for over-privilege is-

sues during application virtualization, we sought to �nd out which

if any of them exist in real-world apps. To that end, we developed

PermLabel, an automated tool designed to unveil over-privilege

issues. This section delineates PermLabel’s design (Section 3.1),

(a) Normal (b) Not Requested (c) Not Declared

Figure 2: Taxonomy of Over-privilege. A required permission

can be mapped into one of these categories based on its type

(install-time or runtime) and authorization status (declared

and/or requested).

highlights key �ndings from testing over 800 apps across multi-

ple app markets (Section 3.2), and provides an in-depth analysis

covering each over-privilege type (Section 3.3).

3.1 PermLabel

As outlined in Section 2.1, install-time permissions must be declared

before use, and runtime permissionsmust be declared and requested

before use. Violations of these prerequisites may lead to one or more

over-privilege issues as de�ned in our taxonomy.

Consequently, to assess an app’s exposure to over-privilege is-

sues, it is essential to ascertain whether and when the app declares,

requests, and utilizes permissions.

PermLabel adopts established methods for identifying declared

and requested permissions [28]. Declared permissions are retrieved

from the app manifest �le parsed upon installation, and categorized

into install time or runtime based on the protection levels indicated

by the Android OS. Requested permissions are obtained by dynam-

ically executing the app, extracting permission names from intents

sent through AMS, as Android OS transforms every permission

request into an intent encoding the permission.

The primary technical challenge faced by PermLabel lies in

identifying permission use (i.e., the required permissions). Exist-

ing static code analysis methods encounter two critical limitations.

Firstly, popular app-virtualization platforms often employ obfus-

cation, rendering static code analysis ine�ective. Secondly, static

analysis assumes a permission-to-API mapping for which no o�cial

document exists, potentially impacting the evaluation’s precision.

To address these limitations, PermLabel uncovers required per-

missions by monitoring calls invoking AMS and identifying those

performing permission enforcement. The subtlety lies in accu-

rately distinguishing permission enforcement from permission self-

checking, both of which invoke AMS, but the latter has yet to call

permission-required APIs. PermLabel dynamically executes apps,

combining information on the timestamp, target UID, permission

name and type, and the call stacks generated by the stack-tracing

function to make this distinction accurately. Further details will be

presented in Section 3.1.2.
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Figure 3: PermLabel work�ow.
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Figure 4: Flow chart of permissions labeling.

While PermLabel’s dynamic approach e�ectively overcomes

code obfuscation and the lack of reliable permission-to-API map-

ping, it is acknowledged that it may potentially underestimate

over-privilege issues due to partial code coverage during testing,

as we will discuss in Section 5.

3.1.1 PermLabel Workflow. PermLabel’s work�ow comprises

two stages—automatic testing and analysis—as shown in Figure 3.

The automatic-testing stage incorporates a user-event generator

and collects permission logs used for permission labeling. With

the collected information, the analysis stage inspects whether an

app violates the permission model by �nding misalignment among

the declared, requested, and required permissions. It then labels

the app with corresponding over-privilege issues and the possible

culprits (e.g., which libraries) of the over-privilege issues.

Automatic Testing. PermLabel includes the hooking modules

on the mobile device and the event generator and log collector on

the computer. The hooking modules log permission enforcement

and request events. We implemented hooks on the AMS interfaces

to ensure comprehensive log collection, which centrally manages

all permission-related events. The log information comprises the

timestamp, target UID, permission name and type, and call stacks,

generated by the stack-tracing function. The call stacks identify

required permissions and determine potential code origins of over-

privilege issues.

On the computer side, PermLabel incorporated DroidBot [17],

a widely used tool to generate user events for the tested apps and

trigger permission-required operations. Then, the log collector iden-

ti�es the permission events generated by hooking modules through

the tested app’s UID and records them to log �les.

Figure 5: Permission self-checking and enforcement.

Analysis. After �nishing app testing, we label permissions in

the collected logs. The �rst step in the labeling process was to

parse the raw logs and transform our focused permission informa-

tion into structured events, which include the declared, requested,

and required permission sets. Because we need to check the order

in which permission events occurred, we bind each event with a

timestamp. Finally, PermLabel iterates through each permission

item in the required set and requested set using the decision di-

agram shown in Figure 4. If a required permission is labeled as

over-privilege, we can infer that the tested app includes operations

that can lead to over-privilege during app virtualization. Addition-

ally, given that runtime permissions are considered dangerous, we

also verify whether they are requested without being explicitly

declared, regardless of whether our tool identi�es them as required.

This precaution is taken to account for the possibility that the app

might utilize these permissions beyond our testing scope or after

software updates.

To provide further insights into over-privileged permissions,

PermLabel examines the call stacks leading to the permission

usage, which may originate from either the tested application or

the library code. Speci�cally, we trace to the beginning of the call

stack after �ltering out the known system packages. We manually

curate a library dataset that contains the information of the library

name, its package name, and the library class. Then, we classify the

library based on the package name extracted from the call stack. If

the calling function is not in the dataset but is a subset of the app

package name, we identify the caller as the tested app itself.

3.1.2 Identification of Required Permissions. To extract required

permissions, we leverage an observation that permission-required

calls from apps always trigger permission enforcement at the ser-

vice provider’s end. Any app or service that receives permission-

required calls on the Android OS can act as the service provider.

Instead of monitoring all these service providers and presumably

omitting some providers/events, PermLabel collects these enforced

permissions through the AMS.

As shown in Figure 5, the AMS serves permission self-checking

calls and performs permission enforcement for permission-required

operations. PermLabelmust distinguish the two from the collected

log. In Figure 5, 1 and 2 are the two permission-enforcement calls

that PermLabel records. Due to their di�erent implementations, we

can identify the callers by inspecting the Binder client for 1 and

function call stacks for 2 . In the �rst type, service providers do

not execute in the same process as the AMS, so they launch a Binder
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IPC to call permission-enforcement functions in the AMS. For ex-

ample, the location system service enforces location permission by

launching a Binder IPC to the AMS whenever an app requests the

device’s location. Accordingly, PermLabel can identify this type of

permission enforcement as one in which the checking target is the

tested app, and the AMS’s caller (the Binder client) is not. In the

second type, service providers are executed in the same process

as the AMS, so the Binder client is the tested app for both permis-

sion enforcement and self-checking. Thus, we should also check

whether the AMS’s call stack contains a permission-enforcement

path to avoid recording permission self-checking.

3.2 Results

App collection. To ensure the representativeness of our evaluation,

we carefully chose our app samples through the following process.

We selected popular host apps with over one million downloads

from Google Play, resulting in 17 apps. Due to the space constraint,

the details of the dataset and implementation will be available at

https://github.com/csienslab/overprivilege-app-virtualization. We

adopted a sampling approach to curating the plugin apps, selecting

10% from the top 100 apps in each category from �ve widely used

app stores. After excluding apps that our tool could not execute,

we arrived at 630 apps. The distribution across app stores is as

follows: Google Play (189 apps), Huawei Market (88), 360 Market

(119), Tencent Myapp (50), and Wandoujia (184).

We also collected malware as our test targets. Although users

would not intentionally install malware, over-privilege may help

malware bypass the app store’s vetting and camou�age as benign

apps, increasing its chances of being loaded by users. For malware,

we selected 196 samples detected by at least �ve anti-virus engines

from Androzoo [2]. This selection broadly represents both benign

and malicious apps. To our knowledge, none of such malware has

been reported for targeting app-virtualization settings.

PermLabel settings. With PermLabel deployed, we executed

these samples on an ASUS Zenfone M2 (X01AD) running Android

9.0. We ran each app for 40 minutes using DroidBot’s greedy depth-

�rst search policies.

RQ1: How prevalent are over-privilege issues in real-world apps?

For plugin apps, we found that 194 apps (31%) and 60 malware

samples (31%) had at least one labeled permission. Furthermore,

among the 194 apps, 25 was from Google Play (13% of all the tested

Google Play apps), 25 was from Huawei Market (28%), 63 was from

360 Market (53%), 15 was from Tencent Myapp (30%), and 66 was

from Wandoujia (36%). Among the apps and malware with over-

privilege issues, 186 (96%) and 58 (97%) of them respectively had

at least one over-privileged runtime permission (i.e., those except

Plugin_iND). The signi�cant number of runtime permissions indi-

cates the potential invasion of user privacy caused by over-privilege.

Due to the presence of multiple over-privileged permissions in

certain apps and malware, the cumulative count of permissions

exceeds the number of apps, which amounts to 250 for apps and 84

for malware.

As for host apps, even though they have overclaimed many

install-time and runtime permissions, we found that 8 out of 17

host apps still attempt to use LOCATION runtime permission without

request (Host_NR).

Result 1: The high proportion of over-privileged runtime

permissions implies negative impact on user privacy.

RQ2: What are the code’s origins leading to these over-privilege

issues?

We analyzed the cause of over-privilege by tracing the root of

permission-required call stacks.

We manually classi�ed the libraries into 12 categories according

to their functionalities (e.g., the information on public reposito-

ries [20]). Apps that obfuscate their package names are excluded

from this analysis due to the lack of information. In total, 74 kinds

of libraries were labeled. The results indicate that the app’s code

and various in-app components (libraries) can contribute to the

identi�ed issues. While it is recognized that libraries can abuse

permissions granted to the apps [24, 30, 32], we underscore that

such abuse is more pronounced in the context of app virtualization.

This is because, during app virtualization, libraries can use not only

the permissions granted to the speci�c app but also those of all

apps (including the host and other plugin apps) running in the

same virtualized environment. This results in a much broader over-

privileged permission scope. In particular, since host apps typically

preemptively declare almost all permissions, libraries will be able

to use these permissions stealthily without declaration.

Figure 6 compares the four over-privilege types caused by di�er-

ent library types. In addition to the app’s code, we �nd that a high

percentage of over-privilege leveraging NR is caused by Advertis-

ing/Analytics libraries (18 di�erent kinds of libraries were found)

and Utility libraries (13 di�erent kinds were found). Speci�cally,

these libraries attempt to track users by using device information

(requiring READ_PHONE_STATE) and provide customized services by

obtaining users’ locations (requiring ACCESS_FINE_LOCATION or

ACCESS_COARSE_LOCATION), whereas the apps using these libraries

do not request permissions. This suggests that the tracking fails on

the Android OS butmay succeed during app virtualization, resulting

in over-privilege.

Some over-privileged permissions are observed to be used by

the app and libraries within the same app. We found that 52 apps

used the same over-privileged permission multiple times.

Result 2: The over-privilege problem is primarily caused

by libraries, posing more substantial privacy threats in

virtualization environments than native ones.

RQ3: What behaviors ensued from the over-privileged permis-

sions?

We further listed the permissions and the corresponding APIs

that are found used by apps in Table 1. The mapping was assembled

from the Android API reference [3]. Though not exhaustive due to

the absence of an o�cial mapping, we utilize it to o�er insights into

the rami�cations of exploiting these over-privileged permissions.

This mapping shows that apps and malware could abuse over-

privileged permissions to call multiple APIs unauthorizedly. For ex-

ample, the install-time permission CHANGE_WIFI_STATE and BLUET

OOTH_ADMIN could be abused to modify the Wi-Fi state and Blue-

tooth settings, respectively. For abusing runtime permissions, we

have pointed out the prevalence of obtaining user location and

phone states in the previous section. Additionally, several malware
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Figure 6: The number of over-privileged permissions caused

by apps and various types of libraries.

Table 1: Over-privileged permissions and APIs.

Permission GP HM 360 TM WJ Mal Permission-required APIs

ACCESS_WIFI_STATE 0 0 2 0 2 1
getConnectionInfo,

getWifiState

CHANGE_WIFI_STATE 1 1 1 1 0 2 startScan

BLUETOOTH_ADMIN 2 0 3 2 0 0
startDiscovery,

startScan, stopScan

ACCESS_LOCATION_EXTRA_COMMANDS 1 1 3 0 0 3 sendExtraCommand

RESTART_PACKAGES 0 0 0 0 3 0 restartPackage

KILL_BACKGROUND_PROCESSES 0 0 0 0 2 0 killBackgroundProcesses

ACCESS_FINE_LOCATION 1 0 1 0 1 0 getLastKnownLocation

ACCESS_COARSE_LOCATION 5 5 9 7 10 7

requestPermissions,

startScan,

getAllCellInfo,

getCellLocation

CAMERA 10 15 2 4 9 4 getCameraInfo, open

READ_EXTERNAL_STORAGE 1 0 0 0 0 0 requestPermissions

WRITE_EXTERNAL_STORAGE 0 1 0 0 0 1 requestPermissions

READ_PHONE_NUMBERS 1 1 0 0 0 4 getLine1Number

READ_PHONE_STATE 15 21 79 14 85 51

requestPermissions,

getRunningAppProcesses,

getSubscriberId,

getActiveSubscriptionInfo

READ_SMS 1 1 0 0 0 4 getLine1Number

RECORD_AUDIO 0 0 1 0 1 1 requestPermissions

READ_CALL_LOG 0 0 0 0 0 1 requestPermissions

WRITE_CALL_LOG 0 0 0 0 0 1 requestPermissions

PROCESS_OUTGOING_CALLS 0 0 0 0 0 1 requestPermissions

CALL_PHONE 0 0 0 0 0 2 requestPermissions

USE_SIP 0 0 0 0 0 1 requestPermissions

GP: Google Play, HM: Hwauei Market. 360: 360 Market, TM: Tencent MyApp,
WJ: Wandoujia,Mal: Malware

samples may have attempted to evade app vetting and hide their ma-

licious intention of managing phone calls and accessing phone IDs,

as we found several over-privileged permissions labeled as rND (e.g.,

CALL_PHONE or READ_CALL_LOG) aroused by requestPermissions.

In other words, these malware can evade permission-based mal-

ware detection but perform these suspicious operations in an app-

virtualization environment.

Worse, we found 38 known apps and 11 malware had multiple

labeled permissions; some apps and malware had up to 4 and 9 over-

privileged permissions (e.g., P9 and P1 in Table 2), respectively. As

such, the malware P1 could stealthily collect users’ private data

and send it to the attacker’s server through a Wi-Fi network by

chaining multiple over-privileged permissions.

Result 3: When running in app-virtualization environ-

ments, many apps can be abused to sneakily access user

data, obtain device resources, and modify phone statuses.

Table 2: Illustrative examples.

Source ID Labels Permissions App / Library

Mal P1 rND

READ_CALL_LOG, WRITE_CALL_LOG,
PROCESS_OUTGOING_CALLS,
READ_PHONE_NUMBERS, CALL_PHONE,
USE_SIP

Self

NR
ACCESS_COARSE_LOCATION,
READ_PHONE_STATE

Analytics

rNDNR READ_SMS Anti-Fraud

P2 iND ACCESS_LOCATION_EXTRA_COMMANDS Utility

P3 rNDNR ACCESS_COARSE_LOCATION Noti�cation

P4 iND CHANGE_WIFI_STATE Utility

WJ P5 rND ACCESS_FINE_LOCATION Utility
P6 NR CAMERA Utility
P7 rNDNR READ_PHONE_STATE Advertising (Multiple)

360 P8 NR READ_PHONE_STATE
Self, Advertising, Noti�ca-
tion, Utility, WebView

HM P9 iND ACCESS_LOCATION_EXTRA_COMMANDS Self
iND CHANGE_WIFI_STATE Unknown (Obfuscated)
NR ACCESS_COARSE_LOCATION Unknown (Obfuscated)
rNDNR READ_PHONE_STATE Self, Utility, Programming

GP P10 rND READ_PHONE_STATE Self
H1 NR ACCESS_FINE_LOCATION Advertising

3.3 Illustrative Examples

During our examination of apps and malware, we observed some

malware samples exhibit additional malicious behaviors when exe-

cuted on host apps, and many apps’ over-privileged permissions

were associated with third-party libraries as shown in Figure 6.

These observations raise an interesting follow-up question:

RQ4: What are the practical consequences and root causes of over-

privileged permissions?

Samples for in-depth analysis. We conducted an in-depth

analysis of several apps and malware to answer this question. Be-

sides those that stimulated our observations, we chose some cases

for each label in our taxonomy, summarized in Table 2. P1 to P4 are

malware samples detected by at least ten anti-virus engines on the

VirusTotal website, which also abuse over-privileged permissions.

P5 to P10 are popular plugin apps that are representative examples

of over-privilege for various permissions. H1 is a popular host app

with over one hundred million downloads.

Practical consequences. To better understand the privacy con-

sequences and chained e�ects in practice, let us consider a scenario

where P1, P3, P5, and P9 are plugin apps inside the host app H1. Con-

sider a frequently used permission, location (ACCESS_COARSE/FIN

E_LOCATION). P5 does not declare it, H1 , P1, and P9 do not request

it, and P3 neither declares nor requests it. However, when P5 runs

in the host app, it can successfully request the permission due to

the host app’s overclaiming permissions. Afterward, both the mal-

ware (P1 and P3), plugin app (P9), and the host app (H1) can obtain

the device location without requesting user consent. Consider an-

other frequently used permission, Telephone (READ_PHONE_STATE).

H1 requests this permission before loading any plugin app. This al-

lows plugin apps P1, P7, P8, and P9 to access phone statuses without

requesting user consent.

Root causes. By examining selected app and malware samples,

we identi�ed three potential root causes for the over-privilege prob-

lem. First, malware may intentionally seek to amplify its malicious

activities. Second, in benign apps, the mixed codebase can inadver-

tently introduce over-privilege, even if not purposefully added by
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developers. Last, developers may overlook changes in permission

declarations and requests during app version updates. Below, we

delve into each of these causes.

3.3.1 Enhancing malicious behaviors. We found malware samples

that appear to amplify malicious behaviors by exploiting over-

privilege during app virtualization, as evidenced by multiple per-

missions labeled as ND or NR. One prominent example is P1, ex-

hibiting 9 over-privileged runtime permissions, the highest among

the malware samples examined. This malware is categorized as a

Trojan on the VirusTotal website, performing malicious activities

stealthily. Speci�cally, it had 6 permissions labeled as rND related

to telephony features. After being granted these over-privileged

permissions, it could read and write call logs and monitor outgoing

calls in real time. This malware also utilized analytics libraries to

track victims. Another malware, P2, was classi�ed as spyware Play

Protect. When P2 was executed in the host apps, it could escalate

ACCESS_LOCATION_EXTRA_COMMANDS and call sendExtraCommand

to inject GPS status into the location system. As these align with

its known malicious purpose of spying on personal data, P2 might

intentionally exploit the over-privilege problem.

3.3.2 Third-party libraries. As brie�y explained in RQ2, libraries

can have a broader over-privileged permission scope during app

virtualization compared to native environments. Without app vir-

tualization, over-privileged libraries could only exploit permissions

on the premise that apps have. In comparison, during app virtualiza-

tion, libraries in a plugin app could gain more illegal authorizations

from the host app regardless of the permission statuses of that plugin

app. For example, we found P6 had over-privileged CAMERA permis-

sion, which its video-capturing library utilizes. The illegal authoriza-

tion of this permission is privacy-invasive because the library could

initiate an instance of the camera directly calling Camera.open

API. P7 is another example representing the over-privilege caused

by multiple advertising libraries. When P7 executes in the host app,

the over-privileged READ_PHONE_STATE lets these libraries success-

fully read phone statuses that they were originally not allowed. In

addition to plugin apps, we also found the advertising library used

by the host app H1 can obtain user location unauthorizedly. After

a plugin app has requested ACCESS_FINE_LOCATION, the library

in H1 can successfully obtain a device’s precise GPS location. This is

problematic because users are unaware that the location permission

granted to a plugin app is also being abused by the host app.

It is important to highlight that even though app developers can

refrain from declaring or requesting unnecessary permissions for

libraries, this precaution becomes ine�ective during app virtual-

ization. This situation is frequently observed in ad frameworks,

analytic libraries, and trackers.

3.3.3 App development and update issues. P9 has 4 over-privileged

permissions, spanning across install-time and runtime. Apart from

the third-party libraries mentioned previously, we found that the

app itself also caused over-privilege problems. Since this app is

well-known for providing travel services, we do not regard it as

with malicious intentions. Instead, it may be due to developers’

negligence about required permissions. We also found improper

app version management that may cause Plugin_rND. When up-

dates took place, the developers presumably removed both the

permission-using code and the permission declaration but neglected

to remove the permission-requesting code. For example, the cur-

rent version of P10 (6.1.15) does not declare READ_PHONE_STATE,

whereas its older versions (e.g., 3.5.96) declare it in the manifest

�le. As such, P10 (6.1.15) could trigger the permission dialogues for

its undeclared runtime permissions in all host apps.

Result 4: Malware can enhance malicious behaviors by

abusing over-privileged permissions, whereas apps’ third-

party libraries or app development issues make apps be-

come over-privileged inadvertently.

4 DEFENSE: PERMSEP

Our investigation uncovered numerous real-world instances of apps

and malware that can abuse over-privilege issues on commodity

app-virtualization platforms.

Building upon these �ndings, we develop PermSep, a practical

solution aimed at preventing all these over-privilege types. The

core concept behind PermSep involves separating the permissions

of host and plugin apps, enabling each to adhere to the Android

permission model. By leveraging common practices among com-

modity host apps, we ensure that this separation can be achieved

while preserving app functionalities and user convenience.

4.1 Desired Properties

In this section, we de�ne the desired properties (DPs) in addition to

preventing over-privilege. We discuss in Section 4.5 that PermSep

ful�lls the properties. To the best of our knowledge, none of the

prior work can achieve all four DPs simultaneously.

DP1. Preserving app functionality.While our defense solu-

tion blocks over-privilege, we expect it to have no negative impact

on app functionality and other legal permission operations. Thus,

PermSep should be able to distinguish whether permission is legal

rather than adopting an all-or-nothing strategy.

DP2. Accurate permission context. As stated by the Android

permission model, permissions usage should align with the context

users have consented to. Users should make decisions based on

accurate context, i.e., correct names of requesting apps via the

permission dialog. Thus, our defense solution should be capable of

identifying permission requesters during runtime.

DP3. Modi�cation-free for host/plugin apps. O�-the-shelf

host apps have attracted large numbers of users. Accordingly, the

defense should be compatible with existing host and plugin apps.

DP4. Low overhead. The performance overhead incurred by

the defense solution should be low to promote user adoption.

4.2 Key Ideas

We focus on separating the permissions of host and plugin apps,

such that they declare and request permissions on their own be-

half. We can then leverage Android’s existing permission-checking

mechanisms to address over-privilege. Based on this this, we can

preserve app functionalities and legal permission operations.

To this end, we propose PermSep, a defense system that en-

forces the permission model separately to the host and plugin apps.

Making this happen required us to 1) identify which apps called per-

mission functions and thereby 2) enforce the Android permission
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model toward the correct identity. We leverage two key observa-

tions that motivated PermSep’s design.

Identifying plugin apps through PIDs. First, based on the

observation that each plugin app runs in di�erent processes, we

utilize their unique PIDs to identify which apps called permission

functions. A challenge is that a plugin app could execute in multiple

processes and its PID may change dynamically. Thus, we need to

ensure the process information is recorded every time a plugin

app’s process is created.

Aligning permissions with native apps. Second, based on

the observation that a plugin app is cloned from a native app, we

use the package name to align permissions between them so that

we can utilize the existing Android permission model. Compared

with PluginPermCheck that re-invents permission control [13],

this design choice brings advantages for permission management

and user convenience. Further, unlike PluginPermCheck that only

checks static permission declaration, we address dynamic permis-

sion requests, enforcing permission for both install-time and run-

time permissions. Besides, compared with creating new identities

to maintain each plugin app’s permission from the initial state, we

avoid users’ burden of repeatedly granting permissions for the same

apps, either the native apps or the multiple-cloned plugin apps.

Repackaging attacks [15, 16, 21] is an evasion method to hide

malicious behaviors by repackaging legitimate apps during app

virtualization. These repackaged apps have the same package name

as legitimate apps but di�erent certi�cates. Android OS prohibits

repackaged apps from executing by verifying that the signatures of

the repackaged apps are the same as their original apps. However,

some host apps allow users to upload APK �les without any security

check. PermSep addresses repackaging attacks by ensuring the

plugin app’s certi�cate is identical to that of the native app.

4.3 Work�ow

At a high level, PermSep’s operation consists of the three major

stages illustrated in Figure 7. In the �rst two stages, PermSep identi-

�es plugin apps and collects their distinguished identities when the

host app launches and instantiates plugin apps. These are prepara-

tion stages that form the foundation for permission management

before plugin apps start running. Then in the third stage, while

plugin apps execute, PermSep manages permissions for requesting

and checking according to the previously-recorded information.

It distinguishes the current targets (the host app or plugin apps)

during app virtualization and uses their identities in the permission

functions. By ensuring that the Android permission model con-

sumes di�erent identities of the host app and plugin app, PermSep

separates the permissions accordingly.

Stage 1: Identify Plugin Apps. PermSep �rst identi�es which

plugin apps the host app launches at runtime. Inspired by VAHunt

[26], PermSep identi�es essential steps taken by host apps to launch

plugin apps to retrieve plugin apps’ packages. It includes two se-

quential steps: 1) extracting the saved components from the re-

quests launched by plugin apps, and 2) saving each one in another

request that is wrapped with a “declared” component of the host

app. PermSep identi�es the two steps performed at runtime.

Stage 2: Collect Distinguished Identities. With the key obser-

vation that each plugin app runs in di�erent processes, PermSep can

Figure 7: A prototype of PermSep.

distinguish plugin apps through PIDs for permission management.

As such, we need to associate plugin apps’ package names with

their PIDs during process instantiation. We utilize this operation

because it is performed every time a plugin app’s process is cre-

ated. Besides, to avoid repackaged attacks, we verify the certi�cates

before saving these data into the PID-lookup table.

Stage 3: Manage Permissions. PermSep aims to manage both

install-time and runtime permissions, including the whole life cycle

from granting to checking. For install-time permission, the grant-

ing is statically determined upon app installation, PermSep only

needs to mediate permission-checking. For runtime permission, the

granting is dynamically determined through permission-requesting,

PermSep should interpose both requesting and checking. The core

concept is to force permission-requesting and permission-checking

to use a distinguished identity of the plugin app instead of the UID

of the host app.

4.4 Implementation

We implemented a prototype of PermSep using hooking meth-

ods with the LSPosed tool [18] as shown in Figure 7. LSPosed is a

framework that enables dynamic code instrumentation of intended

Android processes. The �rst two stages monitored Framework APIs

that were used by host apps to load and instantiate plugin apps:

Stage 1 used the APIs of Intent to identify plugin apps’ packages;

Stage 2 obtained the plugin app’s PID through Instrumentation

and extracted its code path from LoadedApk to verify its certi�-

cate. To support permission management, we hooked permission-

checking interfaces of the AMS and interposed both the permission-

dialog activity in PI to support permission requests. Because An-

droid forbids user apps from directly making system calls to the

kernel, user apps cannot bypass our permission-checking by using

native code to make system calls to access system resources such

as device location.

We used Content Provider to implement the PermSep’s PID-

lookup table that saves the hooking data from its �rst two stages of

operation that are then used in the third stage.We also improved the

e�ciency of permission management by creating a new thread at

the AMS to register an instance of Content Observer for the PID-

lookup table. As such, the permission manager can be noti�ed of

changes and fetch new records into PermSep’s memory in advance.

We discuss the stages shown in Figure 7 below.
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4.4.1 Stage 1: Identify Plugin Apps. Intent-wrapping is essential to

the host app’s launching of plugin apps. PermSep checks whether a

component goes through the intent-extracting (getComponent) and

the intent-saving (setType, setData, putExtra, and putExtras)

operations in the expected order. If it does, PermSep obtains the

plugin apps’ package names through the wrapped component.

VAHunt [26] pointed out that a small number of their test cases

have multiple-intent operations that may produce false positives to

such intent-wrapping patterns (i.e., intent deep copy and shortcut

creation/deletion). PermSep excludes these cases at Stage 2 because

they are not instantiated by the host app in new processes.

4.4.2 Stage 2: Collect Distinguished Identities. Having obtained the

package names of the plugin apps in Stage 1, PermSep can use

this information to associate with the plugin apps’ PIDs at process

instantiation.

Recording plugin apps’ PIDs. PermSep monitors process in-

stantiation through newApplication, which is a necessary step for

every newly-created process. Because we only require plugin apps’

PIDs, if PermSep only checks the package name of the Application

object, the native app’s processes will also be identi�ed. As such,

PermSep further checks the loaded package to distinguish the plu-

gin from the native app’s process. In app-virtualization scenarios,

the host app acts as a placeholder to help plugin apps create pro-

cesses, so the loaded package belongs to the host app. In native

scenarios, on the other hand, the loaded package is identical to the

package name of Application object.

Verifying packages through certi�cates. Repackaged apps

are prohibited from executing on the Android OS. However, these

apps can run successfully if users are deceived into loading repack-

aged APKs as plugin apps. To address this risk, PermSep ensures the

consistency of the certi�cate between the plugin app and its native

app. Therefore, before associating a plugin app’s package namewith

PID, PermSep gets the plugin app’s certi�cate from the APK �le, and

the native app’s certi�cate from the Android OS. Speci�cally, it ob-

tains the plugin app’s �le path by calling the getPackageCodePath

on the instantiated application object and obtains the plugin app’s

certi�cate by calling getPackageArchiveInfo with the �le path.

The certi�cate of the native app, on the other hand, is retrieved

from the Android OS by calling getPackageInfo with the plugin

app’s package name. If the two certi�cates do not match, PermSep

recognizes that the app has been repackaged. It then blocks the app

from being executed in the host app.

4.4.3 Stage 3: Manage Permissions. Then, in the third stage, permis-

sion requesting and checking can retrieve data from memory with

lower latency. We discuss distinguishing the plugin apps from the

host app for permission requesting and checking in the following.

Permission-requesting. PermSep identi�es the source of per-

mission requests and grants the permission to its requester. Here,

the requester can be the plugin app or host app. We use PID as the

identi�er for plugin apps to convert the shared host app’s package

name to that of the requesting app. As the sharing is avoided, host

apps can use their own package name as a distinguishable identi-

�er. PermSep modi�es two system components, i.e., AMS and PI.

A schematic of this permission-requesting process is presented in

Figure 6, in which the steps represent our modi�cation.

Figure 8: Schematic of the permission-request process.

Permission-checking. PermSep aims to prevent over-privilege

and permit legal permission usage. It monitors checkPermission

on the side of AMS and ensures that Android uses the distinguished

identities but not the host apps’ shared UID for permission enforce-

ment and self-checking. Similar to the PID-package conversion

at permission-requesting, the key to permission-checking here is

to convert the shared UID to the plugin app’s corresponding UID.

PermSep obtains the package name from the observer thread and

uses it to acquire the native app’s UID. By doing so, we align the

plugin apps’ permissions successfully with the native apps, pre-

venting over-privilege. However, we found that some host apps

intercepted the plugin app’s self-checking calls and launched new

calls to the Android system on behalf of plugin apps, which is imple-

mented with the IPC type 2 shown in Figure 1. In such scenarios,

PermSep cannot get the plugin app’s PID through Binder, which

always shows the host app’s PID. To overcome this, we detect the

host app’s intercept-and-relaunch permission self-checking calls and

use the plugin apps’ identity. In a typical self-checking scenario,

the conducting app is both the caller and the checking target. In

intercept-and-relaunch scenarios, these two are di�erent apps: the

plugin app is the caller, while the host app is the checking target

on behalf of the plugin apps.

4.5 Evaluation

We evaluate the PermSep prototype’s 1) ability to prevent over-

privilege and 2) embodiment of our desired properties. This eval-

uation was conducted on an ASUS Zenfone M2 (X01AD) running

Android 9.0, with 8-core CPUs and 4GB RAM. To evaluate the abil-

ity to prevent over-privilege, we tested 17 host apps and plugin

apps from Table 2. To evaluate the embodiment of our desired prop-

erties, we also crafted a plugin app — PluginBench, which is used

to test permission-requesting and common Android API calls auto-

matically. We manually executed the plugin apps in di�erent host

apps to conduct the evaluation and used the following methods

for observation. 1) permission context: manually inspecting the app

and permission names showing on the permission-request dialog;

2) permission-granting statuses: dumpsys tool �ltering the permis-

sion of the observed package within the adb shell; 3) the outcomes

of permission-enforcement and permission-required operations: the

output log of PermLabel’s monitoring modules.

Preventing Over-privilege. After deploying PermSep in real

app virtualization environments, we evaluated if PermSep e�ec-

tively separates the permissions of host apps from plugin apps, thus

preventing over-privilege.
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We ran the plugin apps in each host app on a PermSep-enabled

system. After granting the host and plugin app’s permission re-

quests, we checked both their permission-granting statuses and

found that PermSep successfully separated the list of permissions

granted to host apps from plugin apps in all cases. We reproduced

the over-privilege found by PermLabel and observed permission-

granting statuses and the outcomes of permission-required opera-

tions.Wemanually executed the apps on a PermSep-enabled system

along with PermLabel’s monitoring modules. We checked the out-

comes of plugin apps’ permission-required operations concerning

install-time permissions. For runtime permissions, after granting

permissions upon the host app’s requests, we checked both the

permission-granting statuses and permission-required operations.

We tested PermSep against the over-privileged samples found

by PermLabel in Section 3.2. PermSep blocked the over-privilege

of both install-time and runtime permissions as the corresponding

permission-required operations failed. Speci�cally, H1 could no

longer access the device’s GPS location (NR), P1 and P10 could

no longer request the undeclared permissions (rND), P2 could no

longer use the location provider’s extension (iND), P3 could no

longer obtain the device’s cell location (rNDNR), P4 could no longer

start a Wi-Fi scan (iND).

Summary.We discuss that PermSep achieved all four desired

properties. Table 3 summarizes the comparison with related work,

showing PermSep’s advantage in addressing over-privilege.

DP1 and DP2:We validated DP1 for the host and plugin apps by

demonstrating that PermSep did not a�ect permission-requesting

and API calls. We utilized PluginBench to test permission-required

API calls identi�ed by PermLabel. This plugin app requests per-

missions and then triggers each API sequentially. We found that

the host and plugin app could use legal permissions and success-

fully call permission-required APIs. In contrast, previous work that

aborted normal execution when the app virtualization environment

was detected [1, 9, 19, 25, 27]. In addition, we validated that PermSep

achieves DP2. We con�rmed that the app and permission name

shown on the permission dialog are the same as the ones shown

on the native app.

DP3: The design of PermSep does not involve the modi�cation

of either host apps or plugin apps. Thus, we validated DP3 by

checking whether these apps could function normally while it was

deployed. We tested plugin apps in Table 2 in host apps and found

that all functioned normally without encountering unexpected

crashes while preventing over-privilege, showing that PermSep can

seamlessly integrate with the current app virtualization framework.

DP4: To ensure that PermSep’s overhead would be acceptable

to users, we ran PluginBench on Dual Space [10] to test a set of

microbenchmarks that evaluate the latency of operations involved

in each of PermSep’s three stages and Android API calls. We tested

PluginBench with and without PermSep and calculated the latency

incurred by PermSep. The results presented in Figure 9 are the

averaged latency of 230 runs. The latency PermSep introduced in

Stage 1 is negligible. The latency in Stage 2 is relatively higher than

the other stages because more complex operations are involved for

logging identities and verifying the certi�cate of plugin apps. Note

that this latency occurs only during the process instantiation of

plugin apps, which is a one-time cost before plugin apps execute.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

getComponent

setType

newApplication

Camera.open

WifiStartScan

SendExtraCommand

getCellLocation

getLastKnownLocation

getRunningAppProcesses

getAllCellInfo

requestPermission

getSubscriberId

getCameraInfo

Latency (s)

Stage 1

Stage 2

Stage 3

*

*

*

*The overhead is negligible (getCameraInfo: 0.02ms, getComponent+setType: 0.06ms)

Figure 9: Microbenchmarks.

Table 3: Comparing PermSep with related work.

Defense Method
Preventing

Over-privilege
DP1 DP2 DP3 DP4

Default host apps % ! % ! !

VAHunt [26] % ! % ! –∗

NJAS [7] ▲ ▲
∗ % % !

Boxify [6] ▲ ▲
∗ % ! !

Fingerprinting [1, 9, 19, 25, 27] – % % % !

PluginPermCheck [13] ▲ ! % ! !

PermSep (This work) ! ! ! ! !

▲: Partially achieved, i.e. rNDNR and NR unsupported.

▲
∗ : NJAS needs to re-generate the host app for di�erent plugin apps; Boxify adopts the fail-safe defaults

and thus limits the functionalities of plugin apps.
–: Fingerprinting aborts normal execution when the app virtualization environment is detected.

–∗ : VAHunt uses a static detection method that does not a�ect apps’ execution at runtime.

Stage 3 in operations that include multi-staged IPC operations or

initializing hardware, like opening the camera or scanning Wi-Fi.

5 DISCUSSION

Integrating PermSep into the Android Platform. Although

we currently prototyped PermSep on Android 9, the core design

mechanisms, such as identifying plugin apps through PIDs, do not

depend on version-speci�c features. We believe PermSep can be

ported to newer Android releases with modest e�orts.

Limitations of PermLabel. PermLabel inherits two limitations

of dynamic testing: (1) testing time and (2) program coverage is-

sues. Based on the methodology, the average activity coverage for

tested apps is about 10%. The set of permissions that PermLabel

discovered were bounded by program execution paths recorded

within the testing time frame and capability of the event generator.

We chose DroidBot because it is lightweight and does not require

system modi�cation or app instrumentation. To improve the cover-

age, we developed a custom script to automate several prede�ned

operations, e.g., approving normal permission dialogs. The limi-

tations can be potentially addressed by leveraging an optimized

event generator that provides better test coverage more e�ciently.

Limitations of PermSep. PermSep aligns the plugin app’s identity

to its native app counterpart to avoid reinventing a permission

model. It requires a given plugin app to co-exist with a respective

native app and both apps share the same set of permissions. The �rst

limitation has little impact in practice as users commonly execute

cloned copies of native apps in the host apps as plugins. The second

limitation can be addressed by assigning a new UID to plugin apps

that separates the apps’ permissions. This is an area of future work.
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6 RELATEDWORK

Measurement of Over-privilege. Previous work [9, 31, 25] only pre-

sented that the UID sharing of app virtualization leads to over-

privilege problems with proof-of-concept examples but did not dis-

cuss the di�erent types, causes, and consequences of over-privilege.

In contrast, our work considers the over-privilege of install-time

and runtime permissions. It provides a comprehensive classi�cation

of over-privilege, including undeclared and unrequested permis-

sions. Moreover, our work thoroughly study real-world apps that

may exploit over-privilege.

Defense against Over-privilege. At the time of writing, the only

work focusing on preventing over-privilege is PluginPermCheck [13].

It aims to prevent the over-privilege by removing permissions un-

declared from the plugin apps’ manifest �le. PermSep addresses the

PluginPermCheck’s limitations as follows. First, beside preventing

over-privilege resulting from “undeclared permissions”, PermSep

additionally prevents “unrequested permissions”. Second, PermSep

supports runtime permission checks to provide accurate context

for users during runtime.

Defense against Other App-virtualization Attacks. One line of re-

search focused on protecting benign apps from being repackaged

and executed in a host app for malicious purposes. These work [1, 9,

19, 25, 27] proposed approaches for plugin apps to detect if they ex-

ecute in an app virtualization environment and stop the execution

if true. Another line of research proposed defense using malicious

indicators. For instance, Zhang et al. [31] identi�ed malware by cer-

ti�cate di�erences between the host app and plugin apps. However,

the approach could erroneously identify benign apps as malware.

These solutions are inapplicable to addressing over-privilege.

7 CONCLUSION

This paper presented a comprehensive measurement study and

defense solution for over-privilege during app virtualization. We

have designed PermLabel, a novel tool to identify over-privileged

permissions in apps and classify them with the de�ned taxonomy.

We found that known apps running in commodity host apps ex-

hibited over-privilege problems. Thus, we proposed PermSep to

prevent discovered threats in the measurement study while pre-

serving the normal execution of app virtualization. We evaluated

PermSep against 17 commonly used host apps and showed that it

e�ectively prevents over-privilege while preserving performance.
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